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1 Overview 

Developing the CFD tool was a little more intense than I thought it would be. I developed something similar 
for my job but I tried to be more general here so that one could insert a geometry and have the tool solve 
for the flow field. I ended up only implementing geometries that were symmetrical and haven’t implemented 
a 2D CFD approach yet. Looking back, I would also like to try out dual time stepping instead of my iterative 
solver. It would be interesting to see how the two compare in terms of accuracy and computational time.  

Ideally, I would develop a real gas tool and introduce chemical kinetics to simulate chemical reactions and 
reacting flows. This would involve introducing kinetics and species conservation as well which would be a 
little more involved. I will need to come back to this eventually. 

2 General conservation equations 

We will derive the conservation equations for the general 3D case. In the next section, we will look at the 
1D case which we used to build the model for the examples above. We conduct our derivations assuming 
we are looking at a control volume in space that is not moving with the fluid so we have fluid moving in and 
out of our control volume. Compare this to deriving the equation by following a fluid parcel as it moves 
through space. 

We can start with the general conservation equations, and make simplifications after understanding the 
general case. Looking at the general case allows us to get comfortable with the equations and the terms 
and how to translate a physical process into mathematical relations. We will take the infinitesimal volume 
approach and consider our reference frame to be stationary with respect to the fluid (e.g., control volume 
is not traveling with a fluid parcel but our reference frame is such that the fluid is passing through the our 
control volume). First, we look at the conservation of mass. 

2.1 Conservation of mass 

With the conservation of mass, we have that the change of mass in the control volume is equal to the sum 
of the mass entering the control volume minus the sum of the mass exiting the control volume as shown in 
Figure 1. 

 

Figure 1: Conservation of mass. 

We can write this as a differential equation where we have: 

𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑖𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 =  𝑚𝑎𝑠𝑠 𝑖𝑛 −  𝑚𝑎𝑠𝑠 𝑜𝑢𝑡 

Mathematically, this becomes: 

𝜕(𝜌𝑑𝑉)

𝜕𝑡
= [(𝜌𝑢)𝑥 − (𝜌𝑢)𝑥+𝑑𝑥]𝑑𝑦𝑑𝑧 + 
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[(𝜌𝑣)𝑦 − (𝜌𝑣)𝑦+𝑑𝑦]𝑑𝑥𝑑𝑧 + [(𝜌𝑤)𝑧 − (𝜌𝑤)𝑧+𝑑𝑧]𝑑𝑥𝑑𝑦 

Expanding (𝜌𝑢)𝑥+𝑑𝑥 as a Taylor series gives: 

(𝜌𝑢)𝑥+𝑑𝑥 = (𝜌𝑢)𝑥 +
𝜕(𝜌𝑢)𝑥

𝜕𝑥
𝑑𝑥 + ⋯ 

Using only the first two terms on the RHS and plugging into the first equation (using same approach for 
other components) and simplifying, obtain: 

𝜕𝜌

𝜕𝑡
𝑑𝑥𝑑𝑦𝑑𝑧 = −

𝜕(𝜌𝑢)

𝜕𝑥
𝑑𝑥𝑑𝑦𝑑𝑧 − 

𝜕(𝜌𝑣)

𝜕𝑦
𝑑𝑥𝑑𝑦𝑑𝑧 −

𝜕(𝜌𝑤)

𝜕𝑧
𝑑𝑥𝑑𝑦𝑑𝑧 

Simplifying even more: 

𝜕𝜌

𝜕𝑡
= −

𝜕(𝜌𝑢)

𝜕𝑥
−

𝜕(𝜌𝑣)

𝜕𝑦
−

𝜕(𝜌𝑤)

𝜕𝑧
 

Differential form of conservation of mass: 

𝜕𝜌

𝜕𝑡
= −𝛻 ∙ (𝜌𝑈) 

where 𝑈 = (𝑢, 𝑣, 𝑤) 

Integral form: 

∫
𝜕𝜌

𝜕𝑡
𝑑𝑉

 

𝑉

= − ∫ 𝛻 ∙ (𝜌𝑈)𝑑𝑉
 

𝑉

=
𝜕

𝜕𝑡
∫ 𝜌𝑑𝑉

 

𝑉

= − ∫ (𝜌𝑈) ∙ 𝑛̂ 𝑑𝑆
 

𝑆

 

where 𝑛̂ is a unit vector pointing away from the surface element 

2.2 Conservation of momentum 

Next, we can look at the conservation of momentum. We’ll only focus on momentum in the x direction but 
the results are identical for momentum in the y and z directions. Momentum conservation in the x direction 
is shown in Figure 2.  

 

Figure 2: Conservation of momentum. 

As explained above, we will focus on momentum in the x direction to simplify the explanation. We have that 
the change of momentum in the control volume in the x direction is equal to the sum of momentum entering 
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and exiting the control volume in the x direction plus the sum of the body and surface forces. Body forces 
include pressure and any others (such as gravity but we ignore gravity here). Surface forces are mostly 
viscous forces (e.g., friction) 

We can write this as a differential equation where we have: 

𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 
=  (𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑖𝑛 −  𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑜𝑢𝑡)𝑥 
+  𝑠𝑢𝑚 𝑜𝑓 𝑏𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒𝑠 (𝑖𝑛 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) 𝑎𝑛𝑑 𝑠𝑢𝑚 𝑜𝑓 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠 (𝑖𝑛 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) 

This then becomes (only looking in x direction): 

𝜕(𝜌𝑢𝑑𝑉)

𝜕𝑡
= {[𝑢(𝜌𝑢)]𝑥 − [𝑢(𝜌𝑢)]𝑥+𝑑𝑥}𝑑𝑦𝑑𝑧 + 

{[𝑣(𝜌𝑢)]𝑦 − [𝑣(𝜌𝑢)]𝑦+𝑑𝑦}𝑑𝑥𝑑𝑧 + {[𝑤(𝜌𝑢)]𝑧 − [𝑤(𝜌𝑢)]𝑧+𝑑𝑧}𝑑𝑥𝑑𝑦 + 

[(𝜏𝑥𝑥)𝑥+𝑑𝑥 − (𝜏𝑥𝑥)𝑥]𝑑𝑦𝑑𝑧 + [(𝜏𝑦𝑥)𝑦+𝑑𝑦 − (𝜏𝑦𝑥)𝑦]𝑑𝑥𝑑𝑧 + 

+[(𝜏𝑧𝑥)𝑧+𝑑𝑧 − (𝜏𝑧𝑥)𝑧]𝑑𝑥𝑑𝑦 + (𝑃𝑥 − 𝑃𝑥+𝑑𝑥)𝑑𝑦𝑑𝑦𝑧 

Expanding terms using Taylor series and simplifying: 

𝜕(𝜌𝑢)

𝜕𝑡
= −

𝜕

𝜕𝑥
[𝑢(𝜌𝑢)] − 

𝜕

𝜕𝑦
[𝑣(𝜌𝑢)] −

𝜕

𝜕𝑧
[𝑤(𝜌𝑢)] + 

𝜕

𝜕𝑥
𝜏𝑥𝑥 +

𝜕

𝜕𝑦
𝜏𝑦𝑥 +

𝜕

𝜕𝑧
𝜏𝑧𝑥 −

𝜕

𝜕𝑥
𝑃 

Differential form of conservation of momentum in 𝑥 direction: 

 
𝜕(𝜌𝑢)

𝜕𝑡
= −

𝜕

𝜕𝑥
[𝑢(𝜌𝑢)] −

𝜕

𝜕𝑦
[𝑣(𝜌𝑢)] −

𝜕

𝜕𝑧
[𝑤(𝜌𝑢)] +

𝜕

𝜕𝑥
𝜏𝑥𝑥 +

𝜕

𝜕𝑦
𝜏𝑦𝑥 +

𝜕

𝜕𝑧
𝜏𝑧𝑥 −

𝜕

𝜕𝑥
𝑃 

𝜕(𝜌𝑢)

𝜕𝑡
= −𝛻 ∙ (𝜌𝑢𝑈) +

𝜕

𝜕𝑥
𝜏𝑥𝑥 +

𝜕

𝜕𝑦
𝜏𝑦𝑥 +

𝜕

𝜕𝑧
𝜏𝑧𝑥 −

𝜕

𝜕𝑥
𝑃 

Similarly for 𝑦 and 𝑧 directions: 

𝜕(𝜌𝑣)

𝜕𝑡
= −𝛻 ∙ (𝜌𝑣𝑈) +

𝜕

𝜕𝑥
𝜏𝑥𝑦 +

𝜕

𝜕𝑦
𝜏𝑦𝑦 +

𝜕

𝜕𝑧
𝜏𝑧𝑦 −

𝜕

𝜕𝑦
𝑃 

𝜕(𝜌𝑤)

𝜕𝑡
= −𝛻 ∙ (𝜌𝑤𝑈) +

𝜕

𝜕𝑥
𝜏𝑥𝑧 +

𝜕

𝜕𝑦
𝜏𝑦𝑧 +

𝜕

𝜕𝑧
𝜏𝑧𝑧 −

𝜕

𝜕𝑧
𝑃 

We note that momentum has a direction and for each equation above, we should denote a direction. We 
can simplify the above equations to have: 

𝜕(𝜌𝑢)

𝜕𝑡
= −𝛻 ∙ (𝜌𝑢𝑈) + ∇ ⋅ σx −

𝜕

𝜕𝑥
𝑃 

𝜕(𝜌𝑣)

𝜕𝑡
= −𝛻 ∙ (𝜌𝑣𝑈) + ∇ ⋅ σy −

𝜕

𝜕𝑦
𝑃 

𝜕(𝜌𝑤)

𝜕𝑡
= −𝛻 ∙ (𝜌𝑤𝑈) + ∇ ⋅ σz −

𝜕

𝜕𝑧
𝑃 

In the above, 𝜎𝑥 = (𝜏𝑥𝑥 , 𝜏𝑦𝑥 , 𝜏𝑧𝑥), 𝜎𝑦 = (𝜏𝑥𝑦, 𝜏𝑦𝑦 , 𝜏𝑧𝑦), 𝜎𝑧 = (𝜏𝑥𝑧 , 𝜏𝑦𝑧 , 𝜏𝑧𝑧). The above are the differential form 

of the momentum equation in each direction.  

To obtain the integral form, we integrate around our volume (only showing the x direction case first): 
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∫
𝜕(𝜌𝑢)

𝜕𝑡

 

𝑉

𝑑𝑉 = − ∫ 𝛻 ∙ (𝜌𝑢𝑈)
 

𝑉

𝑑𝑉 + ∫ (∇ ⋅ σx)
 

𝑉

𝑑𝑉 − ∫
𝜕𝑃

𝜕𝑥

 

𝑉

𝑑𝑉 

We can use the divergence theorem on the first two terms on the RHS to obtain: 

∫
𝜕(𝜌𝑢)

𝜕𝑡

 

𝑉

𝑑𝑉 = − ∫ (𝜌𝑢𝑈 ⋅ 𝑛̂)
 

𝑆

𝑑𝑆 + ∫ (σx ⋅ 𝑛̂)
 

𝑆

𝑑𝑆 − ∫
𝜕𝑃

𝜕𝑥

 

𝑉

𝑑𝑉 

We can do this for the other directions as well and we obtain: 

𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛: ∫
𝜕(𝜌𝑢)

𝜕𝑡

 

𝑉

𝑑𝑉 = − ∫ (𝜌𝑢𝑈 ⋅ 𝑛̂)
 

𝑆

𝑑𝑆 + ∫ (σx ⋅ 𝑛̂)
 

𝑆

𝑑𝑆 − ∫
𝜕𝑃

𝜕𝑥

 

𝑉

𝑑𝑉 

𝑦 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛: ∫
𝜕(𝜌𝑣)

𝜕𝑡

 

𝑉

𝑑𝑉 = − ∫ (𝜌𝑣𝑈 ⋅ 𝑛̂)
 

𝑆

𝑑𝑆 + ∫ (σy ⋅ 𝑛̂)
 

𝑆

𝑑𝑆 − ∫
𝜕𝑃

𝜕𝑦

 

𝑉

𝑑𝑉 

𝑧 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛: ∫
𝜕(𝜌𝑤)

𝜕𝑡

 

𝑉

𝑑𝑉 = − ∫ (𝜌𝑤𝑈 ⋅ 𝑛̂)
 

𝑆

𝑑𝑆 + ∫ (σz ⋅ 𝑛̂)
 

𝑆

𝑑𝑆 − ∫
𝜕𝑃

𝜕𝑧

 

𝑉

𝑑𝑉 

Summing all of these gives: 

∫
𝜕(𝜌𝑢 + 𝜌𝑣 + 𝜌𝑤)

𝜕𝑡

 

𝑉

𝑑𝑉

= − ∫ (𝜌𝑢𝑈 ⋅ 𝑛̂ + 𝜌𝑣𝑈 ⋅ 𝑛̂ + 𝜌𝑤𝑈 ⋅ 𝑛̂)
 

𝑆

𝑑𝑆 + ∫ (σx ⋅ 𝑛̂ + σy ⋅ 𝑛̂ + σ𝑧 ⋅ 𝑛̂)
 

𝑆

𝑑𝑆

− ∫ (
𝜕𝑃

𝜕𝑥
+

𝜕𝑃

𝜕𝑦
+

𝜕𝑃

𝜕𝑧
)

 

𝑉

𝑑𝑉 

This can be simplified to give our integral form: 

∫
𝜕(𝜌𝑈)

𝜕𝑡

 

𝑉

𝑑𝑉 = − ∫ [𝜌𝑈(𝑈 ⋅ 𝑛̂)]
 

𝑆

𝑑𝑆 + ∫ (𝜎𝑛̂)
 

𝑆

𝑑𝑆 − ∫ ∇𝑃
 

𝑉

𝑑𝑉 

 

∫
𝜕(𝜌𝑈)

𝜕𝑡

 

𝑉

𝑑𝑉 = − ∫ [𝜌𝑈(𝑈̅ ⋅ 𝑛̂)]
 

𝑆

𝑑𝑆 + ∫ (𝜎𝑛̂)
 

𝑆

𝑑𝑆 − ∫ 𝑃𝑛̂
 

𝑆

𝑑𝑠 

Here, 𝜎 is a matrix representing our viscous forces: 

𝜎 = [

𝜏𝑥𝑥 𝜏𝑦𝑥 𝜏𝑧𝑥

𝜏𝑥𝑦 𝜏𝑦𝑦 𝜏𝑧𝑦

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜏𝑧𝑧

] 

It's implied but we assume that our velocity vector is a column vector in this analysis. The complete 
momentum equation should include gravity and other body/surface forces but we neglect these in the 
derivation as we won't use them in the model. 

2.3 Conservation of energy 

Next, we can look at the conservation of energy. Energy doesn’t have a direction but for body forces, our 
assumptions on the directions influences if the work done on the control volume is positive or negative. 

For the conservation of energy, we have that the change of energy in the control volume is equal to the 
sum of the energy entering and leaving the control volume plus the net rate of energy done on the control 
volume. 

The sum of energy entering and leaving is fairly simple. This is similar to the conservation of mass where 
we have some energy entering the control volume and some leaving. This can also include heat transfer 
(e.g., conduction captured in the q” term). 

The net rate of energy done on the control volume can be a little trickier. We will focus on the work done 
from pressure and the shear force. We assume that the pressure at x is acting in the positive x direction. 
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The pressure at x+dx is acting in the negative x direction. This leads to the work being done by the pressure 
at x being positive (work done on the control volume). The work from the pressure at x+dx is negative (work 
done by the control volume). For the viscous stress, we assume that velocity increases in the positive x, y, 
and z directions. This means we assume that the velocity in the x direction at y+dy is greater than y. This 
means that the fluid at y+dy is trying to pull the fluid in the control volume in the x direction. The velocity in 
the x direction at y is less so this fluid is trying to pull the fluid in the -y direction. In this way, the work done 
by the viscous stress in the x direction at y+dy is positive (see (u*tau)_(yx) in the figure) compared to the 
viscous stress at y. We again only show forces and flow in the x direction for simplicity but one can expand 
what we said above to all directions. This is shown in Figure 3.  

 

Figure 3: Conservation of energy. 

We can write this as a differential equation where we have: 

𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑡𝑖𝑚𝑒 
=  (𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛 −  𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡)  +  𝑠𝑢𝑚 𝑜𝑓 𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 
+  𝑎𝑛𝑦 𝑜𝑡ℎ𝑒𝑟 ℎ𝑒𝑎𝑡 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑤𝑒 𝑛𝑒𝑔𝑙𝑒𝑐𝑡 ℎ𝑒𝑎𝑡 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑏𝑢𝑡 𝑡ℎ𝑒𝑦 𝑐𝑎𝑛 𝑜𝑐𝑐𝑢𝑟 𝑖𝑛 𝑛𝑎𝑡𝑢𝑟𝑒) 

This becomes: 

Change of energy = flow of energy in – flow of energy out + rate of energy on volume element 

Change of energy: 

𝜕 [𝜌 (𝑒 +
|𝑈|2

2 ) 𝑑𝑉]

𝜕𝑡
=

𝜕 [𝜌 (𝑒 +
|𝑈|2

2 )]

𝜕𝑡
𝑑𝑉 

Flow of energy in – flow of energy out: 
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= {[𝑢𝜌 (𝑒 +
𝑢2

2
+

𝑣2

2
+

𝑤2

2
)]

𝑥

− [𝑢𝜌 (𝑒 +
𝑢2

2
+

𝑣2

2
+

𝑤2

2
)]

𝑥+𝑑𝑥

} 𝑑𝑦𝑑𝑧

+ {[𝑣𝜌 (𝑒 +
𝑢2

2
+

𝑣2

2
+

𝑤2

2
)]

𝑦

− [𝑣𝜌 (𝑒 +
𝑢2

2
+

𝑣2

2
+

𝑤2

2
)]

𝑦+𝑑𝑦

} 𝑑𝑥𝑑𝑧

+ {[𝑤𝜌 (𝑒 +
𝑢2

2
+

𝑣2

2
+

𝑤2

2
)]

𝑧

− [𝑤𝜌 (𝑒 +
𝑢2

2
+

𝑣2

2
+

𝑤2

2
)]

𝑧+𝑑𝑧

} 𝑑𝑥𝑑𝑦

= −
𝜕

𝜕𝑥
[𝑢𝜌 (𝑒 +

𝑢2

2
+

𝑣2

2
+

𝑤2

2
)] 𝑑𝑥𝑑𝑦𝑑𝑧 −

𝜕

𝜕𝑦
[𝑣𝜌 (𝑒 +

𝑢2

2
+

𝑣2

2
+

𝑤2

2
)] 𝑑𝑥𝑑𝑦𝑑𝑧

−
𝜕

𝜕𝑧
[𝑤𝜌 (𝑒 +

𝑢2

2
+

𝑣2

2
+

𝑤2

2
)] 𝑑𝑥𝑑𝑦𝑑𝑧 = −𝛻 ∙ 𝑈𝜌 (𝑒 +

𝑢2 + 𝑣2 + 𝑤2

2
) 𝑑𝑥𝑑𝑦𝑑𝑧 

Change of energy = flow of energy in – flow of energy out + rate of energy on volume element 

Rate of energy by forces: 

{[𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧 − 𝑢𝑃]
𝑥+𝑑𝑥

− [𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧 − 𝑢𝑃]
𝑥

} 𝑑𝑦𝑑𝑧

+ {[𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧 − 𝑣𝑃]
𝑦+𝑑𝑦

− [𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧 − 𝑣𝑃]
𝑦

} 𝑑𝑥𝑑𝑧

+ {[𝑢𝜏𝑧𝑥 + 𝑣𝜏𝑧𝑦 + 𝑤𝜏𝑧𝑧 − 𝑤𝑃]
𝑧+𝑑𝑧

− [𝑢𝜏𝑧𝑥 + 𝑣𝜏𝑧𝑦 + 𝑤𝜏𝑧𝑧 − 𝑤𝑃]
𝑧

} 𝑑𝑥𝑑𝑦

=
𝜕

𝜕𝑥
[𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧 − 𝑢𝑃]𝑑𝑥𝑑𝑦𝑑𝑧 +

𝜕

𝜕𝑦
[𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧 − 𝑣𝑃]𝑑𝑥𝑑𝑦𝑑𝑧

+
𝜕

𝜕𝑧
[𝑢𝜏𝑧𝑥 + 𝑣𝜏𝑧𝑦 + 𝑤𝜏𝑧𝑧 − 𝑤𝑃]𝑑𝑥𝑑𝑦𝑑𝑧 = 𝛻 ∙ 𝜎𝑇𝑈𝑑𝑉 − ∇ ⋅ 𝑈𝑃 𝑑𝑉 

Heat transfer: 

(𝑞𝑥 − 𝑞𝑥+𝑑𝑥)𝑑𝑦𝑑𝑧 + (𝑞𝑦 − 𝑞𝑦+𝑑𝑦)𝑑𝑥𝑑𝑧 + (𝑞𝑧 − 𝑞𝑧+𝑑𝑧)𝑑𝑦𝑑𝑧 

= −
𝜕𝑞𝑥

𝜕𝑥
𝑑𝑥𝑑𝑦𝑑𝑦𝑧 −

𝜕𝑞𝑦

𝜕𝑦
𝑑𝑥𝑑𝑦𝑑𝑦𝑧 −

𝜕𝑞𝑧

𝜕𝑧
𝑑𝑥𝑑𝑦𝑑𝑦𝑧 = −𝛻 ∙ 𝑞𝑑𝑉 

where 𝑞 = (𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧) and 𝑞𝑥 = −𝑘
𝜕𝑇

𝜕𝑥
 (and similar for other components): 

−𝛻 ∙ 𝑞𝑑𝑉 = 𝛻 ∙ (𝑘𝛻𝑇)𝑑𝑉 

Differential form of conservation of energy: 

𝜕 [𝜌 (𝑒 +
|𝑈|2

2 )]

𝜕𝑡
= −𝛻 ∙ [𝑈𝜌 (𝑒 +

|𝑈|2

2
)] + 𝛻 ∙ 𝜎𝑇𝑈𝑑𝑉 − ∇ ⋅ 𝑈𝑃 𝑑𝑉 + 𝛻 ∙ (𝑘𝛻𝑇) 

Integral form: 

∫
𝜕 [𝜌 (𝑒 +

|𝑈|2

2 )]

𝜕𝑡

 

𝑉

𝑑𝑉 = ∫ {−𝛻 ∙ (𝜌𝑒𝑈) − 𝛻 ∙ [𝑈𝜌 (
|𝑈|2

2
)] + 𝛻 ∙ 𝜎𝑇𝑈𝑑𝑉 − ∇ ⋅ 𝑈𝑃 𝑑𝑉 + 𝛻 ∙ (𝑘𝛻𝑇)} 𝑑𝑉

 

𝑉

 

∫
𝜕 [𝜌 (𝑒 +

|𝑈|2

2 )]

𝜕𝑡

 

𝑉

𝑑𝑉 = ∫ [(−𝜌𝑒𝑈 − 𝑈𝜌 (
|𝑈|2

2
) + 𝜎𝑇𝑈 − 𝑈𝑃 + 𝑘𝛻𝑇) ∙ 𝑛̂] 𝑑𝑆

 

𝑆

 

I use the differential form for the derivation. We’ll see below but I also use the differential form for 
implementing the 1D conservation equations in the model. The integral form has some advantages (e.g., 
easier to handle complex geometries, easier to capture discontinuities, more flexibility with numerical 
techniques) when implementing the equations into a model but we will focus on the differential form for 
now. I find that the differential form is a little easier to understand and derive.  

The integral method will be re-visited when we go 2D (but that has not been implemented yet) 
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3 1D equations 

The examples above are based on a 1D approach that will be explained here. In our general conservation 
equation derivations, we assumed that the area (dy*dz) when looking in the x direction was constant across 
the cell. For our 1D model to handle changes in area (symmetrical changes), we need to slightly modify our 
equations to look at this.  

We will follow the same outline as above, first looking at the conservation of mass then momentum then 
energy. The next section will talk briefly about boundary conditions and the section after that, about how 
the 1D conservation equations we derive here are solved numerically. We will only look at the differential 
form in this section 

3.1 Conservation of mass 

First, we look at the conservation of mass. We see that it is quite similar to the conservation of mass 
schematic we used in the general section above as shown in Figure 4.  

 

Figure 4: Conservation of mass (1D). 

We note that the area is different at the inlet compared to the outlet but we still have: 

𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑖𝑛 𝐶𝑉 =  𝑚𝑎𝑠𝑠 𝑖𝑛 −  𝑚𝑎𝑠𝑠 𝑜𝑢𝑡  

Note that the area is larger at the outlet than the inlet. We could have drawn the schematic with the inlet 
larger than the outlet and we would get the same result. It will be important to pay attention to this since 
assumptions on the area change are important in the derivation, particularly in the momentum and energy 
equations. 

Change in mass = mass in – mass out becomes: 

𝜕(𝜌𝑑𝑉)

𝜕𝑡
= (𝜌𝑢𝐴)𝑥 − (𝜌𝑢𝐴)𝑥+𝑑𝑥  

𝜕(𝜌𝐴𝑑𝑥)

𝜕𝑡
=

𝜕(𝜌𝐴)

𝜕𝑡
𝑑𝑥 = −

𝜕(𝜌𝑢𝐴)

𝜕𝑥
𝑑𝑥 

𝜕(𝜌𝐴)

𝜕𝑡
= 𝐴

𝜕𝜌

𝜕𝑡
= −

𝜕(𝜌𝑢𝐴)

𝜕𝑥
 

Differential form: 

𝜕𝜌

𝜕𝑡
= −

1

𝐴

𝜕(𝜌𝑢𝐴)

𝜕𝑥
 

3.2 Conservation of momentum 

Next, we look at the conservation of momentum. We note again that it is fairly similar to the general form 
we had above and it follows the same idea: 
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𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 
=  (𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑖𝑛 −  𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑜𝑢𝑡)𝑥 
+  𝑠𝑢𝑚 𝑜𝑓 𝑏𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒𝑠 (𝑖𝑛 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) 𝑎𝑛𝑑 𝑠𝑢𝑚 𝑜𝑓 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠 (𝑖𝑛 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) 

We do have new body forces due to the change in area compared to the general case above as shown in 
Figure 5.  

 

Figure 5: Conservation of momentum (1D). 

We say that the pressure on this face (slanted face due to the change in area) is the average of the inlet 
and outlet pressures as shown. This force is acting against the face and we can see that the force from the 
pressure will be perpendicular to that face. From the symmetry, we see that the forces in the y direction 
from the top and bottom face will cancel. The force in the x direction is new and we have one part from the 
top face and a second from the bottom face. From the geometry, we know that the x component is F * 
cos(pi/2-theta) where cos(pi/2-theta) = sin(theta) and sin(theta) = dA/2 / sqrt(dx^2+(dA/2)^2). We note that 
our dA is assumed positive so we add this pressure force in the x direction. If we assumed dA was negative, 
we would be subtracting and also have -dA so we would get the same result. 

We have:  

Change of momentum = flow of momentum in – flow of momentum out + sum of body and surface forces 

*neglecting viscous forces 

𝜕(𝜌𝑢𝑑𝑉)

𝜕𝑡
= {[𝑢(𝜌𝑢𝐴)]𝑥 − [𝑢(𝜌𝑢𝐴)]𝑥+𝑑𝑥} 

+[(𝑃𝐴)𝑥 − (𝑃𝐴)𝑥+𝑑𝑥] + 2
1

2
(𝑃𝑥 + 𝑃𝑥+𝑑𝑥)

𝑑𝐴

2
 

𝜕(𝜌𝑢𝑑𝑉)

𝜕𝑡
= −

𝜕[𝑢(𝜌𝑢𝐴)]

𝜕𝑥
𝑑𝑥 −

𝜕(𝑃𝐴)

𝜕𝑥
𝑑𝑥 + 𝑃𝑑𝐴 +

1

2

𝜕𝑃

𝜕𝑥
𝑑𝑥𝑑𝐴 
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𝜕(𝜌𝑢𝑑𝑉)

𝜕𝑡
=

𝜕(𝜌𝑢𝐴𝑑𝑥)

𝜕𝑡
= −

𝜕[𝑢(𝜌𝑢𝐴)]

𝜕𝑥
𝑑𝑥 −

𝜕(𝑃𝐴)

𝜕𝑥
𝑑𝑥 + 𝑃𝑑𝐴 +

1

2

𝜕𝑃

𝜕𝑥
𝑑𝑥𝑑𝐴 

We can neglect the last term on the RHS since we have 𝑑𝑥𝑑𝐴 which we can say is small compared to the 

other terms but we will keep it for now: 

𝜕(𝜌𝑢𝐴)

𝜕𝑡
= −

𝜕[𝑢(𝜌𝑢𝐴)]

𝜕𝑥
−

𝜕(𝑃𝐴)

𝜕𝑥
+ 𝑃

𝑑𝐴

𝑑𝑥
+

1

2

𝜕𝑃

𝜕𝑥
𝑑𝐴 

Differential form: 

𝜕(𝜌𝑢)

𝜕𝑡
= −

1

𝐴

𝜕[𝑢(𝜌𝑢𝐴)]

𝜕𝑥
−

1

𝐴

𝜕(𝑃𝐴)

𝜕𝑥
+ 𝑃

1

𝐴

𝑑𝐴

𝑑𝑥
+

1

2

𝜕𝑃

𝜕𝑥

1

𝐴
𝑑𝐴 

𝜕(𝜌𝑢)

𝜕𝑡
= −

1

𝐴

𝜕[𝑢(𝜌𝑢𝐴)]

𝜕𝑥
−

1

𝐴

𝜕(𝑃𝐴)

𝜕𝑥
+ 𝑃

1

𝐴

𝑑𝐴

𝑑𝑥
+

1

2

𝜕𝑃

𝜕𝑥
𝑑𝑙𝑛(𝐴) 

 

3.3 Conservation of energy 

We look at the conservation of energy next. We again follow the same general procedure as for the general 
case:  

𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑡𝑖𝑚𝑒 
=  (𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛 −  𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡)  +  𝑠𝑢𝑚 𝑜𝑓 𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 
+  𝑎𝑛𝑦 𝑜𝑡ℎ𝑒𝑟 ℎ𝑒𝑎𝑡 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑤𝑒 𝑛𝑒𝑔𝑙𝑒𝑐𝑡 ℎ𝑒𝑎𝑡 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑏𝑢𝑡 𝑡ℎ𝑒𝑦 𝑐𝑎𝑛 𝑜𝑐𝑐𝑢𝑟 𝑖𝑛 𝑛𝑎𝑡𝑢𝑟𝑒) 

We show our schematic in Figure 6.  

 

Figure 6: Conservation of energy (1D). 

We show in the schematic our new force on the slanted face that we found in the momentum section above 
for the 1D case. We have to be careful with our new pressure force since no flow is actually going across 
the boundary so no work is being done. We still want to include the x component of our new pressure force 
and the average velocity to capture the extra work from our non-symmetrical geometry.  

We have: 

Change of energy = flow of energy in – flow of energy out + rate of energy on volume element 
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𝜕 [𝜌 (𝑒 +
𝑢2

2 ) 𝑑𝑉]

𝜕𝑡
 

= {[𝑢𝜌𝐴 (𝑒 +
𝑢2

2
)]

𝑥

− [𝑢𝜌𝐴 (𝑒 +
𝑢2

2
)]

𝑥+𝑑𝑥

} 

+[(𝑃𝐴𝑢)𝑥 − (𝑃𝐴𝑢)𝑥+𝑑𝑥] + [(𝑞′′𝐴)𝑥 − (𝑞′′𝐴)𝑥+𝑑𝑥] 

+ (𝑢 +
𝑑𝑢

2
) (𝑃 +

𝑑𝑃

2
) 𝑑𝐴 

𝜕 [𝜌 (𝑒 +
𝑢2

2 ) 𝑑𝑉]

𝜕𝑡
= {[𝑢𝜌𝐴 (𝑒 +

𝑢2

2
)]

𝑥

− [𝑢𝜌𝐴 (𝑒 +
𝑢2

2
)]

𝑥+𝑑𝑥

} 

+[(𝑃𝐴𝑢)𝑥 − (𝑃𝐴𝑢)𝑥+𝑑𝑥] + [(𝑞′′𝐴)𝑥 − (𝑞′′𝐴)𝑥+𝑑𝑥] + (𝑢 +
𝑑𝑢

2
) (𝑃 +

𝑑𝑃

2
) 𝑑𝐴 

𝜕 [𝜌 (𝑒 +
𝑢2

2 ) 𝐴𝑑𝑥]

𝜕𝑡
= −

𝜕 [𝑢𝜌𝐴 (𝑒 +
𝑢2

2 )]

𝜕𝑥
𝑑𝑥 −

𝜕(𝑃𝐴𝑢)

𝜕𝑥
𝑑𝑥 −

𝜕(𝑞′′𝐴)

𝜕𝑥
𝑑𝑥 + (𝑢 +

𝑑𝑢

2
) (𝑃 +

𝑑𝑃

2
) 𝑑𝐴 

Differential form: 

𝜕 [𝜌 (𝑒 +
𝑢2

2 )]

𝜕𝑡
= −

1

𝐴

𝜕 [𝑢𝜌𝐴 (𝑒 +
𝑢2

2 )]

𝜕𝑥
−

1

𝐴

𝜕(𝑃𝐴𝑢)

𝜕𝑥
−

1

𝐴

𝜕(𝑞′′𝐴)

𝜕𝑥
+

1

𝐴
(𝑢 +

𝑑𝑢

2
) (𝑃 +

𝑑𝑃

2
)

𝑑𝐴

𝑑𝑥
 

We now have our differential form conservation equations for the 1D case with a changing area (symmetric 
change). In the next section, we will talk about the boundary conditions and then in the section after that, 
talk about how we implement the equations and solve them numerically.  

4 Boundary conditions 

Handling boundary conditions is easier for the 1D case compared to 2D or even 3D. The full list of boundary 
conditions to handle is: 

• Inlet conditions 

• Outlet conditions 

• Wall conditions (flow and thermal/temperature) 
o Flow: no slip (velocity equal to 0) or no flow through boundary (V*n=0 where V is velocity 

vector, n is unit vector perpendicular to surface) 
o Thermal/temperature: Constant temperature at wall or heat flux (this could vary) 

We will only consider the inlet and outlet conditions. When we go to 2D, we will have to consider the wall 
boundary conditions. We simplify our approach to the inlet conditions and only allow specifying pressure 
and temperature (and velocity if the flow is sonic or supersonic). Specifying pressure and temperature is 
similar to having a constant air supply at some conditions (e.g., ambient temperature at elevated pressure).  

Similarly, at the outlet, we only specify pressure (if the flow is subsonic at the outlet).  

The following schematic (Figure 7) illustrates what we specify according to the Mach number at the inlet or 
outlet: 
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Figure 7: Flow boundary conditions (inlet and outlet). 

The mathematical reason is a little complex but in the above schematic, we show the characteristic lines 
for the different mach number conditions at the inlet and the outlet. Essentially, how to specify inlet and 
outlet boundary conditions simplifies down to the number of characteristic lines entering the control volume. 
So for example, with a subsonic flow at the inlet, we have two characteristic lines entering the control 
volume so we specify the pressure and temperature. We could also specify, say density and velocity. We 
don’t do this because physically, it is easier to understand us having a constant pressure and temperature 
supply and allowing the velocity to float to match whatever flow is being pulled from our source. 

At the outlet with a subsonic flow, we specify pressure only. This makes sense where we have a valve and 
can control the outlet pressure (e.g., open to ambient conditions). 

For the supersonic case, we first need to either specify if the inlet is supersonic or subsonic. In the diverging 
example above, we specified a sonic inlet for one example to give us the result we want. When the model 
sees the user specifies a sonic flow at the inlet, the model calculates the sonic velocity based on the inlet 
temperature and pins the inlet velocity to be sonic. In this case, all inlet conditions are specified.  

At the outlet, the model determines based on the velocity and the temperature, if the flow is subsonic or 
not. If the flow is subsonic, the model uses the pressure boundary condition specified. If the flow becomes 
supersonic, the model determines that the flow is supersonic and lets all variables at the outlet boundary 
float.  

5 Solver information  

In this section, I will describe how the solver works. It is a semi-implicit method where the at each time step, 
the model iterates until some convergence criteria is met. There are weights in the solver that can be 
modified to make the solution more or less implicit. With a more implicit solution, the error will be smaller 
but with the increasing number of iterations, the model will take longer to run. 

I’ll first modify the equations a bit to make them easier to implement then I will talk about how the solution 
is found, mainly using the conservation of mass equation as an example.  

First, I will start with our 1D equations and simplify them a bit before implementing them. This will save 
some computation time and make any debugging easier once the code is written.  

Start with equations in differential form: 

𝜕𝜌

𝜕𝑡
= −

1

𝐴

𝜕(𝜌𝑢𝐴)

𝜕𝑥
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𝜕(𝜌𝑢)

𝜕𝑡
= −

1

𝐴

𝜕(𝜌𝑢2𝐴)

𝜕𝑥
−

𝜕𝑃

𝜕𝑥
 

𝜕 [𝜌 (𝑒 +
𝑢2

2 )]

𝜕𝑡
= −

1

𝐴

𝜕 [𝑢𝜌 (𝑒 +
𝑢2

2 ) 𝐴]

𝜕𝑥
−

1

𝐴

𝜕(𝑢𝑃𝐴)

𝜕𝑥
−

1

𝐴

𝜕(𝑞′′𝐴)

𝜕𝑥
+ 𝑢𝑃

1

𝐴

𝑑𝐴

𝑑𝑥
 

This can be further simplified (saves some computational steps later) if we multiply the conservation of 
mass by 𝑢 and subtract it from the conservation of momentum: 

𝜕(𝜌𝑢)

𝜕𝑡
− 𝑢

𝜕𝜌

𝜕𝑡
= −

1

𝐴

𝜕(𝜌𝑢2𝐴)

𝜕𝑥
+

1

𝐴
𝑢

𝜕(𝜌𝑢𝐴)

𝜕𝑥
−

𝜕𝑃

𝜕𝑥
 

𝜌
𝜕𝑢

𝜕𝑡
= −𝜌𝑢

𝜕𝑢

𝜕𝑥
−

𝜕𝑃

𝜕𝑥
 

𝜕𝜌

𝜕𝑡
= −

1

𝐴

𝜕(𝜌𝑢𝐴)

𝜕𝑥
 

𝜌
𝜕𝑢

𝜕𝑡
= −𝜌𝑢

𝜕𝑢

𝜕𝑥
−

𝜕𝑃

𝜕𝑥
 

𝜕 [𝜌 (𝑒 +
𝑢2

2 )]

𝜕𝑡
= −

1

𝐴

𝜕 [𝑢𝜌 (𝑒 +
𝑢2

2 ) 𝐴]

𝜕𝑥
−

1

𝐴

𝜕(𝑢𝑃𝐴)

𝜕𝑥
−

1

𝐴

𝜕(𝑞′′𝐴)

𝜕𝑥
 

The conservation of energy equation can be simplified by multiplying the conservation of momentum 
equation by 𝑢 and subtracting from the conservation of energy equation: 

𝜕(𝜌𝑒)

𝜕𝑡
+ 𝑢𝜌

𝜕𝑢

𝜕𝑡
+

𝑢2

2

𝜕𝜌

𝜕𝑡
− 𝑢𝜌

𝜕𝑢

𝜕𝑡

= −
1

𝐴

𝜕(𝑢𝜌𝑒𝐴)

𝜕𝑥
− 𝜌𝑢2

𝜕𝑢

𝜕𝑥
−

1

𝐴

𝑢2

2

𝜕(𝑢𝜌𝐴)

𝜕𝑥
+ 𝜌𝑢2

𝜕𝑢

𝜕𝑥
−

1

𝐴

𝜕(𝑢𝑃𝐴)

𝜕𝑥
+ 𝑢

𝜕𝑃

𝜕𝑥
−

1

𝐴

𝜕(𝑞”𝐴)

𝜕𝑥
+ 𝑢𝑃

1

𝐴

𝑑𝐴

𝑑𝑥
 

𝜕(𝜌𝑒)

𝜕𝑡
+

𝑢2

2

𝜕𝜌

𝜕𝑡
= −

1

𝐴

𝜕(𝑢𝜌𝑒𝐴)

𝜕𝑥
−

1

𝐴

𝑢2

2

𝜕(𝑢𝜌𝐴)

𝜕𝑥
− 𝑢𝑃

𝑑(𝑙𝑛𝐴)

𝑑𝑥
− 𝑃

𝜕𝑢

𝜕𝑥
−

1

𝐴

𝜕(𝑞”𝐴)

𝜕𝑥
 

𝜕𝜌

𝜕𝑡
= −

1

𝐴

𝜕(𝜌𝑢𝐴)

𝜕𝑥
 

𝜌
𝜕𝑢

𝜕𝑡
= −𝜌𝑢

𝜕𝑢

𝜕𝑥
−

𝜕𝑃

𝜕𝑥
 

𝜕(𝜌𝑒)

𝜕𝑡
+

𝑢2

2

𝜕𝜌

𝜕𝑡
= −

1

𝐴

𝜕(𝑢𝜌𝑒𝐴)

𝜕𝑥
−

1

𝐴

𝑢2

2

𝜕(𝑢𝜌𝐴)

𝜕𝑥
− 𝑃

𝜕𝑢

𝜕𝑥
− 𝑢𝑃

𝑑(𝑙𝑛𝐴)

𝑑𝑥
−

1

𝐴

𝜕(𝑞”𝐴)

𝜕𝑥
 

Re-arranging conservation of energy to get: 

𝜌
𝜕𝑒

𝜕𝑡
+ 𝑒

𝜕𝜌

𝜕𝑡
+

𝑢2

2

𝜕𝜌

𝜕𝑡
= −

1

𝐴
𝑒

𝜕(𝜌𝑢𝐴)

𝜕𝑥
− 𝑢𝜌

𝜕𝑒

𝜕𝑥
−

1

𝐴

𝑢2

2

𝜕(𝜌𝑢𝐴)

𝜕𝑥
− 𝑃

𝜕𝑢

𝜕𝑥
− 𝑢𝑃

𝑑(𝑙𝑛𝐴)

𝑑𝑥
−

1

𝐴

𝜕(𝑞”𝐴)

𝑑𝑥
 

Multiply conservation of mass by 𝑒 and multiply conservation of mass by 
𝑢2

2
 and subtract from conservation 

of energy to get: 

𝜌
𝜕𝑒

𝜕𝑡
+ 𝑒

𝜕𝜌

𝜕𝑡
− 𝑒

𝜕𝜌

𝜕𝑡
+

𝑢2

2

𝜕𝜌

𝜕𝑡
−

𝑢2

2

𝜕𝜌

𝜕𝑡

= −
1

𝐴
𝑒

𝜕(𝜌𝑢𝐴)

𝜕𝑥
+

1

𝐴
𝑒

𝜕(𝜌𝑢𝐴)

𝜕𝑥
− 𝑢𝜌

𝜕𝑒

𝜕𝑥
−

1

𝐴

𝑢2

2

𝜕(𝜌𝑢𝐴)

𝜕𝑥
+

1

𝐴

𝑢2

2

𝜕(𝜌𝑢𝐴)

𝜕𝑥
− 𝑃

𝜕𝑢

𝜕𝑥
− 𝑢𝑃

𝑑(𝑙𝑛𝐴)

𝑑𝑥

−
1

𝐴

𝜕(𝑞”𝐴)

𝑑𝑥
 

𝜕𝜌

𝜕𝑡
= −

1

𝐴

𝜕(𝜌𝑢𝐴)

𝜕𝑥
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𝜌
𝜕𝑢

𝜕𝑡
= −𝜌𝑢

𝜕𝑢

𝜕𝑥
−

𝜕𝑃

𝜕𝑥
 

𝜌
𝜕𝑒

𝜕𝑡
= −𝑢𝜌

𝜕𝑒

𝜕𝑥
− 𝑃

𝜕𝑢

𝜕𝑥
− 𝑢𝑃

𝑑(𝑙𝑛𝐴)

𝑑𝑥
−

1

𝐴

𝜕(𝑞”𝐴)

𝑑𝑥
 

In the first iteration, we only consider gasses that obey the ideal gas law (𝑃 = 𝜌𝑅𝑇), expand the heat flux, 

𝑞”, and assume that fluid properties are, at least, constant across the time step so we ultimately obtain: 

𝑐𝑣𝜌
𝜕𝑇

𝜕𝑡
= −𝑐𝑣𝑢𝜌

𝜕𝑇

𝜕𝑥
− 𝑃

𝜕𝑢

𝜕𝑥
+ 𝑘

𝜕2𝑇

𝜕𝑥2
− 𝑢𝑃

𝑑(𝑙𝑛𝐴)

𝑑𝑥
+ 𝑘

𝜕𝑇

𝜕𝑥

𝑑(𝑙𝑛𝐴)

𝑑𝑥
 

Our final set of equations are shown below. These are the equations we will implement in the code to solver 
for density, temperature, and velocity at each time step. Pressure is found using our equation of state (ideal 
gas law). 

𝜕𝜌

𝜕𝑡
= −

1

𝐴

𝜕(𝜌𝑢𝐴)

𝜕𝑥
 

𝜌
𝜕𝑢

𝜕𝑡
= −𝜌𝑢

𝜕𝑢

𝜕𝑥
−

𝜕𝑃

𝜕𝑥
 

𝑐𝑣𝜌
𝜕𝑇

𝜕𝑡
= −𝑐𝑣𝑢𝜌

𝜕𝑇

𝜕𝑥
− 𝑃

𝜕𝑢

𝜕𝑥
+ 𝑘

𝜕2𝑇

𝜕𝑥2
− 𝑢𝑃

𝑑(𝑙𝑛𝐴)

𝑑𝑥
+ 𝑘

𝜕𝑇

𝜕𝑥

𝑑(𝑙𝑛𝐴)

𝑑𝑥
 

To solve these equations, we first approximate the differential equations using the finite difference method. 
We will then discuss how the equations are solved to find a solution at each time step.  

𝜕𝜌

𝜕𝑡
= −

1

𝐴

𝜕(𝜌𝑢𝐴)

𝜕𝑥
 

𝜌
𝜕𝑢

𝜕𝑡
= −𝜌𝑢

𝜕𝑢

𝜕𝑥
−

𝜕𝑃

𝜕𝑥
 

𝑐𝑣𝜌
𝜕𝑇

𝜕𝑡
= −𝑐𝑣𝑢𝜌

𝜕𝑇

𝜕𝑥
− 𝑃

𝜕𝑢

𝜕𝑥
+ 𝑘

𝜕2𝑇

𝜕𝑥2
− 𝑢𝑃

𝑑(𝑙𝑛𝐴)

𝑑𝑥
+ 𝑘

𝜕𝑇

𝜕𝑥

𝑑(𝑙𝑛𝐴)

𝑑𝑥
 

Now need to discretize, we begin by looking at point 𝑖 and considering the points before and after, 𝑖 − 1 

and 𝑖 + 1, respectively. For the velocity, we get:  

𝑢𝑖−1 = 𝑢𝑖 −
𝑑𝑢𝑖

𝑑𝑥
𝑑𝑥 +

𝑑2𝑢𝑖

𝑑𝑥2

(𝑑𝑥)2

2
− ⋯ + (−1)𝑛

𝑑𝑛𝑢𝑖

𝑑𝑥𝑛

(𝑑𝑥)𝑛

𝑛!
 

𝑢𝑖+1 = 𝑢𝑖 +
𝑑𝑢𝑖

𝑑𝑥
𝑑𝑥 +

𝑑2𝑢𝑖

𝑑𝑥2

(𝑑𝑥)2

2
+ ⋯ +

𝑑𝑛𝑢𝑖

𝑑𝑥𝑛

(𝑑𝑥)𝑛

𝑛!
 

Subtracting the first form the second we get: 

𝑢𝑖+1 − 𝑢𝑖−1 = 2
𝑑𝑢𝑖

𝑑𝑥
𝑑𝑥 + 2

𝑑3𝑢𝑖

𝑑𝑥3

(𝑑𝑥)3

3!
+ 2

𝑑5𝑢𝑖

𝑑𝑥5

(𝑑𝑥)5

5!
+ ⋯ 

𝑢𝑖+1 − 𝑢𝑖−1 = 2
𝑑𝑢𝑖

𝑑𝑥
𝑑𝑥 + 2

𝑑3𝑢𝑖

𝑑𝑥3

(𝑑𝑥)3

3!
+ 2

𝑑5𝑢𝑖

𝑑𝑥5

(𝑑𝑥)5

5!
+ ⋯ 

This can be put into this form: 

𝑑𝑢𝑖

𝑑𝑥
=

𝑢𝑖+1 − 𝑢𝑖−1

2𝑑𝑥
− 2

𝑑3𝑢𝑖

𝑑𝑥3

(𝑑𝑥)2

3!
− 2

𝑑5𝑢𝑖

𝑑𝑥5

(𝑑𝑥)4

5!
− ⋯ 

So we obtain: 

𝑑𝑢𝑖

𝑑𝑥
=

𝑢𝑖+1 − 𝑢𝑖−1

2𝑑𝑥
+ 𝑂(𝑑𝑥)2 

If we add the two original equations, we obtain: 
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𝑢𝑖−1 + 𝑢𝑖+1 = 2𝑢𝑖 + 2
𝑑2𝑢𝑖

𝑑𝑥2

(𝑑𝑥)2

2
+ 2

𝑑4𝑢𝑖

𝑑𝑥4

(𝑑𝑥)4

4!
+ ⋯ 

Similarly to the previous exercise, we obtain: 

𝑑2𝑢𝑖

𝑑𝑥2
=

𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

(𝑑𝑥)2
− 2

𝑑4𝑢𝑖

𝑑𝑥4

(𝑑𝑥)2

4!
− 2

𝑑6𝑢𝑖

𝑑𝑥6

(𝑑𝑥)4

6!
− ⋯ =

𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

(𝑑𝑥)2
− 𝑂(𝑑𝑥)2 

The final equations we have: 

𝜕𝜌

𝜕𝑡
= −𝑢

𝜕𝜌

𝜕𝑥
− 𝜌

𝜕𝑢

𝜕𝑥
− 𝜌𝑢

𝑑(𝑙𝑛𝐴)

𝑑𝑥
 

𝜕𝑢

𝜕𝑡
= −𝑢

𝜕𝑢

𝜕𝑥
−

1

𝜌

𝜕𝑃

𝜕𝑥
 

𝜕𝑇

𝜕𝑡
= −𝑢

𝜕𝑇

𝜕𝑥
−

𝑃

𝑐𝑣𝜌

𝜕𝑢

𝜕𝑥
−

1

𝑐𝑣𝜌
(𝑢𝑃 − 𝑘

𝜕𝑇

𝜕𝑥
)

𝑑(𝑙𝑛𝐴)

𝑑𝑥
+

1

𝑐𝑣𝜌
𝑘

𝜕2𝑇

𝜕𝑥2
 

We can then put into numerical form using our derivative approximations: 

𝜌𝑖
𝑛+1 − 𝜌𝑖

𝑛

∆𝑡
= −𝑢𝑖

𝑛 𝜌𝑖+1
𝑛 − 𝜌𝑖−1

𝑛

2∆𝑥
− 𝜌𝑖

𝑛 𝑢𝑖+1
𝑛 − 𝑢𝑖−1

𝑛

2∆𝑥
− 𝑢𝑖

𝑛𝜌𝑖
𝑛 ln(𝐴𝑖+1) − ln (𝐴𝑖−1)

2∆𝑥
 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
= −𝑢𝑖

𝑛 𝑢𝑖+1
𝑛 − 𝑢𝑖−1

𝑛

2∆𝑥
−

1

𝜌𝑖
𝑛

𝑃𝑖+1
𝑛 − 𝑃𝑖−1

𝑛

2∆𝑥
 

𝑇𝑖
𝑛+1 − 𝑇𝑖

𝑛

∆𝑡
= −𝑢𝑖

𝑛
𝑇𝑖+1

𝑛 − 𝑇𝑖−1
𝑛

2∆𝑥
−

𝑃𝑖
𝑛

𝑐𝑣𝜌𝑖
𝑛

𝑢𝑖+1
𝑛 − 𝑢𝑖−1

𝑛

2∆𝑥
 

−
1

𝑐𝑣𝜌𝑖
𝑛 (𝑢𝑖

𝑛𝑃𝑖
𝑛 − 𝑘

𝑇𝑖+1
𝑛 − 𝑇𝑖−1

𝑛

2∆𝑥
)

ln(𝐴𝑖+1) − ln(𝐴𝑖−1)

2∆𝑥
+

1

𝑐𝑣𝜌𝑖
𝑛 𝑘

𝑇𝑖+1
𝑛 − 2𝑇𝑖

𝑛 + 𝑇𝑖−1
𝑛

(𝑑𝑥)2
 

To find a solution, we first find the time derivative based on the current step. We then find an approximation 
for the next time using the time derivatives we found at the current step. We then want to find the time 
derivative again at our approximated next step. We then use weights (X for time derivative found using 
current step, Y for time derivative found at approximated next step) to find a weighted time derivative. We 
then keep iterating on our approximated next step until we converge. We use a convergence error term to 
determine when the solution converges or not.  

To make the solution more stable, we want to first guess (approximate) the values at 𝑛 + 1, and then correct 

by iterating until we find a mostly implicit solution. We call this a semi-implicit iterative procedure. We only 
demonstrate the process using the momentum equation 

First we find 𝑢𝑖
𝑛+1 by solving the equation below for 𝑢𝑖

𝑛+1 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
= −𝑢𝑖

𝑛 𝑢𝑖+1
𝑛 − 𝑢𝑖−1

𝑛

2∆𝑥
−

1

𝜌𝑖
𝑛

𝑃𝑖+1
𝑛 − 𝑃𝑖−1

𝑛

2∆𝑥
 

We now have an approximation for 𝑢𝑖 at 𝑛 + 1 and introduce the weights 𝑋, 𝑌 and iterate. We use the 

weighted average (using the weights) to adjust our approximation of 𝑢𝑖 at 𝑛 + 1 by solving the following 

equation for 𝑢𝑖
𝑛+1: 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
= −

𝑋𝑢𝑖
𝑛 + 𝑌𝑢𝑖

𝑛+1

(𝑋 + 𝑌)2

(𝑋𝑢𝑖+1
𝑛 + 𝑌𝑢𝑖+1

𝑛+1) − (𝑋𝑢𝑖−1
𝑛 + 𝑌𝑢𝑖−1

𝑛+1)

2∆𝑥

−
1

𝑋𝜌𝑖
𝑛 + 𝑌𝜌𝑖

𝑛+1

(𝑋𝑃𝑖+1
𝑛 + 𝑌𝑃𝑖+1

𝑛+1) − (𝑋𝑃𝑖−1
𝑛 + 𝑌𝑃𝑖−1

𝑛+1)

2∆𝑥
 

We then iterate using the new approximation until (𝑢𝑖
𝑛+1)𝑁 − (𝑢𝑖

𝑛+1)𝑁−1 < 𝜖 where 𝑁 is the number of 

iterations.  
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The solution should approximate an implicit solution if 𝑌 ≫ 𝑋. The same procedure is used for the other two 

conservation equations. The four variables (𝑢, 𝑃, 𝜌, 𝑇) are coupled with each other (with the ideal gas law 

being used as the fourth relationship) which can slow the solution down but with sufficient weights, the 
solution should remain stable.   
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