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1 Overview

This project involves developing the Kalman filter for a Li-ion battery state of charge (SOC) application. The
Kalman filter involves combining a process estimate with a measurement to estimate the value of a state
of the system. The big assumption with the Kalman filter is that the system state is observable. A block
diagram of the Kalman filter is shown in Figure 1.
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Figure 1: Kalman filter block diagram.

To implement the Kalman filter, we must have a model of the system. The modeling work was the most
intense part of the project with plenty of opportunities for future improvements identified. Once the model
was built, the derivation and implementation of the Kalman filter was fairly straightforward. The Kalman filter
can always be further tuned to improve accuracy. Two of the big handles to tune the Kalman filter are the
process and measurement covariance matrices. It can be non-trivial to find these. We take a very simplistic
approach and assume everything is independent so that we don’t have to worry about the coupling between
states and errors.

For this application, we use a lithium ion battery with battery data supplied by the University of Maryland
(https://calce.umd.edu/battery-data).

2 Model (Equivalent Circuit)

The first step of the project was to build an equivalent circuit model of the battery cell. The equivalent circuit
model we use is shown in Figure 2.
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Figure 2: Li-ion equivalent circuit model.


https://calce.umd.edu/battery-data

The equivalent circuit model was chosen a little arbitrarily. From some basic research, we know that the
open circuit voltage (OCV) of the cell is related to the SOC of the cell. This is our voltage source on the left
of the schematic. We also expect the terminal voltage to differ from the OCV during operation. We include
a resistance, R,, to capture instant changes in terminal voltage due to an external current (current supplied
by or to the battery). From the schematic, we see that our convention is positive current for when the cell is
discharging and negative current for charging (maybe the reverse would have made more sense). We
include two RC circuits to capture the dynamics of the cell: one RC circuit for fast dynamics and another for
slow dynamics. This is capture with a resistance, R;, and capacitance, C;, where i = 1,2.

Figure 3 shows why we have a single resistance (R,) and RC circuits (we would need at least one RC
circuit). We see that when a current is applied, the terminal cell voltage instantaneously drops (the R, will

capture this) with some dynamics, particulary when the current is unapplied and the voltage dynamics take
some time to settle.
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Figure 3: Part of an Incremental Current/OCV test.

In our approach, we break the modeling down into two steps:

1. We first want to find the OCV vs SOC relationship
2. We then want to find our other model parameters: Ry, Ry, C;, R, and C,

2.1 OCV vs SOC Relationship
The battery data gives two data sets for finding the OCV vs SOC relationship:

e Low current test — in this test, a low current is applied to cell to discharge and then charge, the
current is low enough where you can assume that any internal dynamics of the cell are small and
can be neglected

¢ Incremental current test — in this test, a current is applied incrementally to the cell to charge and
discharge the cell where the cell voltage is allowed to settle during increments

We explore the OCV vs SOC relationship using both methods. The battery data also includes charge and
discharge capacity data where we assume this gives the actual SOC of the battery. This is an assumption.
| don’t know exactly how the charge and discharge capacities are calculated.

Examples of the low current test and incremental current/OCV test are shown in Figure 4 and Figure 5,
respectively.
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Figure 4: Low Current test.
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Figure 5: Incremental Current/OCYV test.

Some of the data for the Low Current test was not usable. It's possible the data got corrupted somehow.
All of the Incremental Current/OCV test data was good. This is summarized in Table 1.

Table 1: Data summary for Low Current and Incremental Current/OCV tests.

Temperature (deg. C) Sample Low Current test Lra\gtremental Current/OCV
0 1 Good Good
2 Good Good
1 Bad Good
25
2 Good Good
1 Bad Good
45
2 Bad Good




For the Low Current test data, we find the OCV vs SOC relationship for the discharge part of the cycle and
then find it again on the charge cycle of the test. We then take the average to cancel out any dynamics

(think of how we would cancel out the effect of R,). This is shown in Figure 6.
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Figure 6: OCV vs SOC relationship from Low Current test for Sample 1 at 0 deg. C.

Figure 7 and Figure 8 show the OCV vs SOC and dOCV/dSOC vs SOC curves for the same data (sample
1 at 0 deg. C). Figure 8 trims the x-axis to start at 0.1 to better show shape from 0.1 to 1 SOC. We see that
that the sharp drop off in OCV at low SOC leads to a sharp increase in dOCV/dSOC at those same low

SOC values

We see that between 0.2 and 0.5 SOC, that dOCV/dSOC is small meaning that OCV doesn’t change much
in that region with a change in SOC which we also see when looking directly at the OCV vs SOC curve.

This will be useful when using the Kalman filter which will be explained more later
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Figure 7: OCV and dOCV/dSOC vs SOC for Low Current test with Sample 1 at 0 deg. C.



Low Current OCV and dOCV/dSOC vs SOC
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Figure 8: OCV and dOCV/dSOC vs SOC for Low Current test with Sample 1 at 0 deg. C (trimmed x-axis).

With the Incremental Current test data, the cell is discharged and charged incrementally. There is a long
relaxation period where the cell voltage equilibrates and we use that measurement as the OCV. For the
SOC, we again rely on the discharge and charge capacity measurements.

The Incremental Current test data doesn’t give us a continuous relationship like the Low Current test (or
at least a high-resolution relationship) and we use linear interpolation to fit the curve. This may not be
totally appropriate as we can see that the relationship is not linear from the Low Current test data but we
assume that linear interpolation is valid

We see that there is almost no difference between the charge and discharge OCV vs SOC curves for the
Incremental Current tests. This is shown in Figure 9 for the same sample and temperature as shown in
Figure 6.
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Figure 9: Incremental Current/OCV OCV vs SOC.

Compared to the Low Current OCV vs SOC curve, the Incremental Current OCV vs SOC curve doesn’t
result in the same sharp drop in OCV near 0 SOC. Looking at the Low Current and Incremental Current
data, we do see a big recovery at the end of the discharge cycle. Since the Incremental Current data is



looking at the OCV after a sufficiently long time (long enough for the internal dynamics to settle), this can
explain why the Incremental test data doesn’t give the same shape at low SOC compared to the Low
Current data. The OCV vs SOC and dOCV/dSOC relationship from the Incremental Current test for Sample
1 at 0 deg. C is shown in
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Figure 10: OCV and dOCV/dSOC vs SOC for Incremental Current test with Sample 1 at 0 deg. C.

In the SOC region between 0.2 and 0.4, we again see a small dOCV/dSOC region similar to the Low Current
result which is due to the small OCV changes with respect to changes in SOC in that region

Figure 11shows all of the OCV vs SOC curves plotted together. Since the Low Current OCV vs SOC curves
show a sharp drop at low SOC in OCV, we clip the curves to only show 0.1 < SOC < 0.9.
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Figure 11: All OCV and dOCV/dSOC vs SOC data.



Generally, the curves are on top of each other. The Incremental Current Sample 1 0 deg. C is a bit of an
outlier at low SOC and the Incremental Current Sample 1 25 deg. C is a bit of an outlier at high SOC

Looking at the dOCV/dSOC curve, it's more of the same with the Incremental giving a different shape at
low SOC compared to the Low Current but again, that's most likely due to the sharp drop off in voltage for
the Low Current test at low SOC.

We will look at a few more plots but the results here suggest that OCV vs SOC doesn’t vary much with
temperature or at least, that there is no noticeable trend with temperature.

Figure 12 shows the OCV and dOCV/dSOC relationship for the Low Current tests and Figure 13 shows the
Incremental Current tests.

There isn’t a big difference between the temperatures and the samples. We will take a closer look only at
the Incremental Current results since we have more data for those tests but looking at the plots on the right,
we don’t see a big difference. We will also compare the difference among temperatures and samples to
further evaluate how the OCV vs SOC relationship changes as a function of temperature
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Figure 12: All Low Current test OCV and dOCV/dSOC vs OCV data.



Incremental Current
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Figure 13: All Incremental Current test OCV and dOCV/dSOC vs OCV data.

Figure 14 shows the OCV and dOCV/dSOC data from the Incremental Current test for Sample 1 and
Sample 2 while Figure 15 shows the same data but by temperature.
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Figure 15: Incremental Current OCV and dOCV/dSOC vs OCV for 0 deg. C (left), 25 deg. C (middle), and 45 deg. C
(right).



The plots show that there isn’t a huge difference in OCV or dOCV/dSOC curves by temperature expect for
the 25 deg. C curve for Sample 1. There is a similar difference between samples compared to differences
by temperature.

Again, we have limited insight into the testing setup. It's also possible that the ambient temperature was
held fairly constant but internal defects or due to differences between cells, there could be a significant
temperature gradient across the cell which can affect the OCV vs SOC relationship. Either way, for simplicity
and since we don’t see a huge difference among temperatures (similar difference between samples), we
assume that OCV vs SOC is not a function of temperature and use a constant OCV vs SOC relationship.

It's interesting to compare the OCV vs SOC relationship from the Low Current test to the Incremental
Current test.

Figure 16 compares the OCV and dOCV/dSOC vs SOC relationships between the Low Current test and
Incremental Current test. For each test, we take the average of all the OCV and dOCV/dSOC vs SOC plots
(since we assumed the temperature dependence is weak and we neglect it). Figure 17 shows the same
thing but with trimmed relationsihps on the x-axis to better see the comparison since the Low Current OCV
vs SOC curve really falls off when the SOC gets low.
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Figure 16: Low Current vs Incremental Current test - OCV and dOCV/dSOC vs OCV.
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Low Current vs Incremental Current
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Figure 17: Low Current vs Incremental Current test - OCV and dOCV/dSOC vs OCV (trimmed x-axis).

There is fairly good agreement except near low SOC. For the Low Current curve, the slope increases
sharply as you approach low SOC values. The Incremental Current curve has it's slope also increase but
it isn’t as sharp. There is a fairly smooth dOCV/dSOC vs SOC curve for the Incremental Current test
compared to the Low Current test (which is probably partially due to the interpolation needed in the
Incremental Current case). We also know that the OCV decreases sharply as you approach low SOC and
that the battery dynamics are strong even for low currents. For these reasons, we will use the Incremental
Current OCV vs SOC relationship for our analysis.

2.2 Equivalent Circuit Parameters

This section describes finding the parameters: Ry, R, C1, R,, and C,. This work was actually fairly intensive
but | had to draw the line somewhere so | didn’t explore as much as | would have liked. | also considered
changing the model but that wasn’t the original focus of this project and | wanted to stay true to that. | copy
the equivalent circuit model here again for reference in Figure 18.
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Figure 18: Equivalent circuit model.
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The equivalent circuit model shown in Figure 18 is not novel (you find this extensively in the literature). We
can put the following equation together:

V=Voev—Vo—Vi—-V,

In this equation, Vycy = Ve (SOC), Vy, =i * Ry, and V; and V, are the RC circuit voltages. The RC circuit is
a resistor and capacitor in series as shown in Figure 19

|4
+ -
1 i
—
C

We have for the RC circuit:

V.=Vy=V
i=i.+i,
We also have:
Vg = iR
. dv
i.= CE

We then have:

. CdV R
_(l dt)

Solving this gives (assuming constant i):
VeRC = jReRC + A
Where A is a constant

t
V =iR + Ae RC
Att = 0, we have:

Vit=0)=V,=iR+A
> A=V,—iR

12



Then:
_t _t
V=Ve RC+iR(1—e RC)
Fori =0,
_t
V = I/Oe RC
ForV, =0,
_t
V =iR (1—e RC)

| first tried one approach using the Low Current and Incremental Current data to find R, and 7; = R;C;. This
approach gave interesting results and then | ended up using DST data (Dynamic Stress Test) and used the
least squares optimization method to find the parameters. Both of these approaches are described below:

2.2.1 First Approach — Recovery data

Both the Low Current and Incremental Currnet tests have recovery periods where | can use the i =0
equation for the RC circuit. This is shown in Figure 20.
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Figure 20: Recovery period in Incremental OCV test.

During the recovery period, the current is 0, my terminal voltage equation becomes:
V=Voev=Vo—=Vi—=V;
t t

= Vocr(S0C) =0 — V1,o€_H - Vz,oe_a

We find R, by using the voltage at the beginning of the recovery period and the voltage immediately before,
take the difference, and then divide by the current:

Vrecovery (t=0) - Vcharge or discharge (t = end)

R, =
0 i

13



| use a curve fitting algorithm to find the parameters: V, ,,V, ,, 71, and 7,. Two examples are shown below,
Figure 21 shows a recovery period after a charge increment, and Figure 22 shows a recovery period after
a discharge increment.
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Figure 21: Incremental Current data and fit for Cycle Index 14 (Charge Increment).
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Figure 22: Incremental Current data and fit for Cycle Index 14 (Discharge Increment).

There are good fits with the data. When | look at the parameters, there was some significant variation that
will be discussed next. I'll look at my R, fits which were not a result from the curve fitting shown above but
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was a result of using the data looking at the voltage at the beginning of the recovery period, voltage prior
to the recovery period, and the current. Figure 23 shows R, vs OCYV for all the data (all the recovery period
data).
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Figure 23: Ry vs OCV for all data from the recovery periods of Low Current and Incremental Current tests.

At low OCV, the data gets a little messy which is not that surprising. When looking at the low OCV (or low
SOC) behavior in the Low Current test, we see sharp changes in voltage which can complicate the data.
We trim the low OCYV values and this is shown in Figure 24.
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Figure 24: R, vs OCV with the low OCV values trimmed.
It's interesting to see different bands of values. There is quite the variation too with more than a factor of 2

separating the lowest band from the highest band. | wanted to further explore this and started breaking the
data down by sample and temperature. | found that each band corresponds to a different sample at a
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different temperature. One example for data from the Incremental Current test at 25 deg. C for Sample 1
and Sample 2 is shown below in Figure 25.
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Figure 25: Ry vs OCV for Sample 1 and Sample 2 at 25 deg. C from the Incremental Current data.

It's interesting to note how consistent the R, data is between samples. Without understanding the test setup
and the data acquisition, it’s difficult to explain the difference. | checked to see if the time difference between
samples could explain it but it does not. It is possible that the R, value can vary cell to cell and it might just
be a coincidence that Sample 1 is twice that of Sample 1 in this case.

Possibly the way the cell was instrumented was different and/or terminal resistance could explain the
difference. Since, it's hard to explain the difference, this is one reason why we pivot to using the DST data.

Having a big variation in R, where it seems to vary by sample makes it difficult to trust the fits (it actually
makes it hard to trust any of our fits) but we will still show the time constant fits. This will be interesting to
compare to our second method which uses the DST data to fit the parameters. Figure 26, Figure 27, and
Figure 28 show t; vs OCV, 1, vs OCV, and 7, /7, vs OCV, respectively.
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Figure 28: 7, /7, vs OCV.

The fits show a clear slow and fast dynamic. Since the recovery data is not really subjecting the cell to
varying inputs, using that data to find the slow and fast dynamic response is not that appropriate. However,
we do see an order of magnitude difference that helps validate our approach somewhat.

R, vs temperature is shown in Figure 29 and Figure 30 shows 1, and t, vs temperature. The max. values
are around room temperature for all values (curve is just the smooth line option for plotting, it's not any
calculated fit). Since we had questions about the values and the validity of using the Low Current and
Incremental Current recovery test data to fit the parameters, we want to use the DST data and compare
those findings to these. We already know that our recovery time period might influence the results and the
DST data gives us many changes in current that should really highlight the dynamics of the cell. We can
compare our findings here to the findings using the second approach.
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Figure 29: Recovery fit R, vs temperature.
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Figure 30: Recovery fit time constants vs temperature..

2.2.2 Second Approach — DST data

In the second approach, we use the DST data to find our parameters. Using this data has the advantage
of capturing lots of dynamics due to the changes in current and the resulting changes in voltage. A plot of
one DST data set is shown in Figure 31.
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Figure 31: DST data at 0 deg. C starting at 80% SOC.

In this approach, we use the least squares optimization method to find our parameters. Again, we assume
that we have the SOC data so that we know what the OCV is during the whole test using our OCV vs SOC
relationship we built previously. We then have:

V(t) =Vocy (SOC()) = Vo =V =V,
Here V, = i(t) * R, and for V; and V,, we have:

avit) Vi) +i(t)
dt R, C;
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Based on our current parameter guess, we use an ODE solver to solve for V; based on the current data.
We then have the residual:

Vmeasure - Vf it

| explored a few different curve fitting methods in python but found the best success with the least squares
method (it was both faster and seemed to give fairly good results that made sense). | also explored a bit
with the RC circuit voltage and how to integrate to solve for the RC circuit voltage. I'll discuss some on that
too.

The way the fit program works is by starting with an initial guess of the parameters, calculating the OCV
voltage from the SOC data, calculating V;,, and then calculating V; and V,. | used an ODE solver in Python
to find V; and V, so that | didn’t solve the ODE directly but had the ODE tool in Python find the solution
based on current data, initial conditions (V; and V, are both 0 initially), time data, and my current guess of
Ry, Cy, Ry, and C,. | also experimented with finding V; and V, by saying that the current is constant over the
current time step and saying:

_Ate _Aty
Vi,k = Vi'k_le RiCy + ikRi 1 — e RiC;

This is how the RC circuit voltage would be calculated in the controller in an actual application. One could
also just use Euler forward integration too:

Vik- i
WL At +

Vik = Vig—r — R.C, C,

At

| compare both methods when actually implementing the Kalman filter and will discuss this more in the
Kalman filter section. When fitting parameters, | used the Python ODE solver instead of the exponential
solution. | found that when | use the exponential solution, the fit doesn’t look great.

I'll show one example of the fit for the DST data at 25 deg. C with the initial SOC at 80%. The parameter
iteration is shown in

Parameter History
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Figure 32: DST Parameter Fit (25 deg. C, 80% SOC).

The parameters adjust and settle after about 40 iterations. The code is sensitive to initial conditions and |
didn’t do too much exploring with this. | used initial conditions based off the values | found in the first
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approach. The fit compared to the measured voltage is shown in Figure 33. | also compared the fit (using
the Python ODE solver) to the exponential solution (online model) and this is shown in Figure 34.
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Figure 33: Model fit vs measured voltage.
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Figure 34: Comparison between fit using Python ODE tool (model) vs using exponential solution (online model).

| got a fairly good fit and both the model and online model agree fairly well too. The RMS error between the
model and fit for this data set is 0.31 and the R? value is 0.88.

| evaluated using the exponential fit in the least squares algorithm for finding parameters. This didn’t give
me great results as shown in Figure 35. R, drops to almost 0 which shows that the second RC circuit is
potentially not necessary. My time constants are approximately 0.7 s (700 ms) and 0.0005 (0.5 ms) which
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don’t agree with the other fitting methods so | didn’'t pursue this much more. Really | could evaluated a
single RC circuit and dove into the parameter fitting details more (initial conditions, solver methods, etc.)

Parameter History
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Figure 35: DST Parameter Fit (25 deg. C, 80% SOC) (using exponential RC solution).
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Figure 36: Model fit (online model) vs measured voltage.
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Figure 37: Comparison between fit using Python ODE tool (model) vs using exponential solution (online model).

The two above plots show that | still got a good fit. For all the fits, we do see that at low OCV (or low SOC),
that the fit gets not good. The dynamics get very apparent at low OCV and possibly the Low Current OCV
vs SOC relationship could better capture this. | don’t really look into this much more either. It's also possible
that the parameters could be functions of SOC (or OCV) too. Looking at the time scales, the tests were
longer than 2.5 hours where internal heating could become significant. We would have to look at a different
model (or look at Joule heating), assume that heat goes into the cell, use a cylindrical heat transfer model
and look at the temperature gradient across the cell. A lot of assumptions could be made but it could give
us some insight into the temperature gradient. Potentially at low temperatures, the convective cooling could
keep the cell at fairly constant temperature while hotter temperatures lead to more of a gradient. This could
potentially be useful in battery management systems where you are balancing battery performance and
ambient conditions (do you use the batteries to run an A/C system to keep the cells cool — would that make
any sense?)

The parameters | found are shown in Table 2. It's interesting to note how the fits are good (low RMS error
and high R2) for low temperatures but the results get worse for higher temperatures. It’'s also interesting
how the low temp. shows two distinct time constants (differing by an order of magnitude) while the warmer
temperatures don’t show this. They show comparable time constants. Potentially a double RC circuit would
work for low temperatures and a single RC circuit would be more appropriate for warmer temperatures. It’'s
clear that even the R, parameter gave me trouble with the ODE solver.

Table 2: Parameter fits from DST data.

Ro R1 c1 R2 c2 R2fit | RMS |taul |tau2 | T (deg.C) | SOC (%)
0.119 |0.014 [862 |005 |8706 |095 |0.09 |117 |4382 |0 50
0.101 |0.014 [91.3 |0027 |940 |097 |0.08 |128 |2581 |0 80
0.062 |0.012 [103.9 | 0.005 |981.5 |0.84 |019 |125 |484 |25 50
0.06 |0.008 |103.6 |0.002 |1054.8 |0.89 |031 |079 |[1.85 |25 80

23



0.077

0.01

100.3

0.006

1000.8

0.84

0.28

0.98

5.75

45

50

0.062

0.007

105.8

0.0003

1009.9

0.85

0.6

0.71

0.33

45

80

| ended up taking the average of the above values and using those in the Kalman filter. The final values are

shown in Table 3.

Table 3: Parameter values to be used in Kalman filter.

Ro R1 C1 R2 Cc2 taul tau2 T (deg. C)
0.11 0.014 88.7 0.039 905.3 1.23 35.21 0
0.061 0.01 103.7 0.003 1018.2 1.02 34 25
0.07 0.008 103.1 0.003 1005.3 0.85 3.05 45

The last thing to look at is the trends to compare to the first approach. Figure 38 shows the resistance
(Ry, Ry, R,) fits vs temperature. Figure 39 shows the time constant fits vs temperature. Figure 40 shows the
capacitance (C,, C,) fits vs temperature.
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Figure 38: Resistance fits vs temperature.
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Figure 39: Time constant fits vs temperature.

C,andC,
106 1040
104 1020
102
1000
100 o
_ os o 980
= 9% —o—C2 960 =
o Q
94 940
92
920
90
88 900
86 880
0 10 20 30 40 50
Temp. (deg. C)

Figure 40: Capacitance fits vs temperature.

The curve shapes for the fits from the DST are almost the opposite of the first approach fit. Here, we have
more concave shapes while the first approach showed convex.

This clearly shows that our battery model is, at least, a little suspect. | don’t really look into this anymore.
This has the anticipated effect of really influencing our Kalman filter SOC calculation results but it's decent
enough to at least use to build the filter.

3 Kalman Filter

This section first has a quick discussion on other methods for calculating SOC, then shows the Kalman
filter derivation, how | applied it to the lithium ion battery (there are multiple ways of doing this), and then
showing some results.
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3.1 Other SOC Calculation Methods
To help understand the results, we will actually compare three methods of tracking the SOC:

1. Coulomb counting (integrate current over time — SOC)
2. Voltage lookup (voltage — SOC)
3. Kalman filter (combining the above two)

The first two are fairly trivial in how they would be implemented. Clearly, the first is very susceptible to your
initial value of SOC. The Kalman filter is a little more complicated but actually simple and elegant once we
see the derivation and implementation. Here is a quick description of the first two methods:
3.1.1  Coulomb counting
This method is based on:
S0C(t) = S0C(t,) + L0
h ° r, @ * 3600

Here, Q is in units Ah. This method’s accuracy is dependent on the initial value of the SOC but other logic
could be introduced to help correct the initial guess. For most of our comparison we will assume that we
know the initial SOC

3.1.2 OCV-SOC
This method is based on:
S0C(t) = SOC(OCV(t))

Here, OCV (t) is the voltage reading of the cell. As we have seen this method will result in measuring the
cell voltage which is not necessarily equal to the OCV voltage

3.2 Derivation

One of the main motivations of using the Kalman filter is to improve our measurement of SOC. We can't
directly measure the SOC but we assume that the state is observable based on current and voltage
measurements which is supported by our SOC definition and our battery equivalent circuit model. This
makes the Kalman filter well suited for our application

We will first look at the derivation of the Kalman filter and then apply it to our battery model. We will be
technically using the Extended Kalman Filter (EKF) since the Kalman filter is for linear systems and our
battery model is clearly non-linear but we linearize it around our point and then use the Kalman filter
approach

We first start with state and observation functions:
Xk = fr () + by (ug) + wy
Zk = h(xk) + by(uk) + vk

We have that £, (x) is a nonlinear function of x, b, is a nonlinear function of the input u, wy, is process noise
with zero mean, z, is our measurement, h(x) is our nonlinear observation function, b,, is a nonlinear function
of the input u, and v, is our measurement noise with zero mean.

We first need to get this in the form suitable for the Kalman filter so we use some sort of integration, forward
Euler integration would be the most straightforward to get:

X = Xg—1 + fx(Xk—1)AL + by (up_1)AL + wy
= X = fe(X-1) + by (Ug—1) +wy

We assume that the initial state is x, with known mean pu, =E[x,] and covariance P, =
E[(x, — o) (x, — to)T]. If x is a nx1 column vector, then P, is nxn.
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For the derivation, we will assume we have for our state and measurement equations:
X = fe (1) + by (Ug—1) + wy
zx = h(x) + by (W) + g

We then say that xj_, is our previous estimate of the state at step k. We then say our forecast estimate of
Xy IS:

X = fre(Xg-1) + by (uge—1)
We then have for our error estimate:
el =xx —x] = f(ee1) + by(ug—r) + Wi — fi(xf_y) — by (w1 )AL
= fi 1) — fe(g—q) + wy

af (e
= fluf) + (EEED) s a0 - a0+

In the last approximation, we expand f, (x;_,) in a Taylor Series about xj_;. So we then have:

of = <dfx (xk-1)

X1 — X V+w,=Fe,_{+w
* dx )(k1 k-1) k k-1 k

Then we obtain:
T
p/ = E[eg(e{) ]==E[(Fek_14—m%)(Fek_14-m%)T]

= Fek_le]'g_lFT + WkW,Zv = FPk_lFT + Qk

Fe,_,w!l and wiel_,FT are both zero since the expected value of a vector or matrix multiplied by the noise
is zero. Q, is our process noise covariance matrix.

We then assume that the estimate of the state at the next time step is a linear function of our measurement,
Zy-

xfF=a+K,z,
We want to find a. We first have:
ex = Xp — Xp
Our expected error is:
Elex] = 0 = E[x; — x¢] = E[x} — a — Ky z(]
We then use:
Xg = e,’: + x,’:

Zy = h(xk) + by(uk) + Vi

(k) f+b y (W) + vy

dh(x],
Eh(x£)+(§7xk)(xk—xk)+b (W) + vy = h(x]) + —=%2 i

We then plug this into our expected error equation and obtain:
Elex] = E[xy —a—Kyz, | = E e,{+x,’:—a—Kk<h(x )+ —— ( ) el +b (uk)+vk>]

This then becomes:
Eley] = x| —a — K h(x]) — Kiby (we)

- a=x] — K [h(x]) + b, (w)]
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x¢ = a+ Kz, = x] + K[z — h(x]) — b, (w)]
Now we want to find what K is. First we plug our value of a back into our error equation:
ex =X — X = x, — @ — Kz, = % — x], — K[z — h(x]) — b, (w)]

ex = fr(X_1) + by (Wie_1) + wy — x — K [R(x) + by (wye) + vy — h(x]) — by ()]

d r
= ot 4 (LS Gy =)+ b+ w = ) = By

- K, [h(x,f) dh(xk) (x — xk) + by, (uy) + vy — h(x,f) by, (ux)
df,(x2_, dh(x!
= (%) er—1 +wr— Ky [ é;ck) e,{ + vk]

= Fek_1 + Wy — Kk(He,f + Uk) = Fek_l + Wy — Kk[H(Fek_l + Wk) + Uk]

a an(xf
In the last expression, we use F = df"(x"‘1), H= (4) ,and e; = Fe,_; + wy. We then obtain:
dx dx k

er = (I - KkH)Fek_l + (I - KkH)Wk - Kkvk
We then have:
— T — T T T T T T T
Py, = Elex(er)']1 = U — KyH)Fey_qe, 1 F' (I — K H)' + (I — Kk H)wwy (I — K H)' + Ky v v K
= (I — KeH)P (I — K H)T + K R K
=P/ — P/HTK] — K HP! + K, HP/ HTK] + Ky R KT

R is our measurement noise covariance matrix. Again, the cross terms cancel since we assume the process
noise and measurement noise are independent with a mean of 0. We want to minimize the trace of of P,
(e.g., minimize our mean square error) by taking the derivative with respect to K, setting that to zero, and
solving for K.

We will have:
T(Py) =T(B) - T(P/HTKL) — T(K HP!) + T(K HP  HTKY) + T(K Ry K

And we want to find %}i"). Before we do that, let’s review the trace of a matrix and how we can take the

derivative of the trace since the trace is a scalar. We start with comparing the trace of KA to ATKT. We
have:

T(KA) = T(ZKimAmj) = YK1jAj + XKyjAj + -+ = BKijA;
T(ATK™) = T(ZALKm;) = ZAL K + TAL KD + -+ = A1 Ky + YA5K,; +
= YAjiKij = YAi;Kji

So we have that T(KA) = T(ATKT). Now we can look at the derivative of the trace with respect to K

Ajn Ay Az
drKA) _ |4, Ay Asp | _ g

dK A13 A23 Ass

dT(KA) dT(ATKT)

— = AT. We also have something similar to T(AKT) so we

Since T(KA) = T(ATKT), we have ———
want explore this to:

T(AK™) = YA K} + YA K) + -+ = TAK| = YA;K;;
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dT(AKT) _ 4
dKk

We know can find %. We have:
T(P) =T(P) = T(P/HTK]) — T(KeHP!) + T(K HP HTKT) + T (K R KY)
=T(P[) - 2T (K HP!) + T(K HP HTKT) + T (Ki RiKF)

Since T(P/HTK!) = T(K, HP/). Taking the derivative with respect to K, gives:

dr(Py) _dT(R/) , dT (K HB!) N dT (K HP/HTK]) 4T (KR KiD)
dK dKy dkK, dKy, dKy
= _Z(Hpkf)T + (HpkaTKkT)T + (K HPJHT) + (RiKOT + (KieRy)
= —2(HP!) + 2(K(HP! HT) + 2(Ki Ry.)
Setting this to zero and solving for K, gives:
P/H™ = K, (HP/H™ + Ry)
K =PI HT(HBIHT + R,)

We call this the Kalman gain and we can plug this back into our P, equation. We can check the dimensions
of the gain with what we would expect. If x is nx1, we expect P to be nxn. H is the derivative matrix of our
measurement with respect to our state with dimension mxn where m is the number of measurements. R is
our measurement covariance with dimension mxm. So we then have nxn * nxm (transpose of H) to give

nxm for PkaT. For the term in parentheses, we have mxn * nxn * nxm + mxm which is mxm. The inverse is

mxm then we have nxm * mxm which gives us nxm for the Kalman gain. In our lithium ion SOC application,
we will have one measurement, the terminal voltage, so we expect our Kalman gain to be nx1.

Back to our P, equation, we can rearrange:

P, = P/ — PIHTK] — K, HP] + K HP/ HTK] + K R K]

Pe = (I — KeH)P/ (I — K H)T + Ky R KT
We then can expand to get:
P, = (I — K H)B/ — (I — K, H)P/HTK} + K\ Ry KT = (I — K, H)P! + [-P/HT + K, (HP/ HT + R, )| K}
= (I - KeH)B! + [P HT + P/HT|K] = (I — K H)B/
- P = (I — KeH)P/

We note that K, (HP/ HT + R,) = P/ HT(HP/ HT + R,) (HP/HT + R,) = P/ H"

We know have our understanding of the Kalman filter and summarize in Figure 41.
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Initial conditions: Current
X0 measurement:

F, Zg

| |

Correction step:
Prediction step: — K = P/HT(HPHT + R )‘1
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Figure 41: Kalman filter (really the Extended Kalman filter).

Initial conditions need to be defined for the Kalman filter. We will show how the Kalman filter can correct
itself based on bad initial conditions. In the prediction step, we base our prediction on our understanding of
the process (our model), we then update our error covariance matrix. In our correction step, we calculate
our Kalman gain, and then use the Kalman gain and our measurement to correct our prediction. We then
update our error covariance matrix using the Kalman gain as well.

An important note is that in Figure 41, we use u,_, in our correction step instead of u,. In our derivation we
used u, in our derivation (even though you can use u,_, and the results stay the same). In practical
applications, in our correction step we would have the measurement at z, but only have knowledge of the
past control output, u,_,, since we are most likely using the Kalman filter result to (partly) decide on the
next control action (e.g., current output).

Some of the challenges with implementing the Kalman filter are:

e Building an accurate model (in practice, the model may need to account for degradation effects.
Imagine a battery in practice that after half its life, the battery capacity might reduce)

¢ Identifying the process and measurement noise covariance matrices. It's easiest to assume
independence between noise variables to build a diagonal noise matrix but this may not be valid in
some applications (for ours, we assume it is)

3.3 Application to Li-lon Battery SOC

The Kalman filter combines a prediction (OCV estimate using our battery model with our OCV to SOC
relationship) and a measurement (current measurement integrated over time to give SOC). In this section,
we first find the state matrix (using two methods), the measurement equation, and then put the whole thing
together in the Kalman filter.

3.3.1  Process Equation (State Matrix)
We first start with our basic equations:
V=Vocy—Vo—Vi =V,
Vocv = f(SOC)

Vo =i %Ry

avi®y _ i@ i® . _
& - mRe T 51D
SOC(t) = SOC(ty) — f%dt
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We want to derive our state matrix and then find F = %(xx). There are two ways to do this (probably more
but we'll look at two ways). We first start with the following equations for both methods:

x = f(x) +b(u)

dsoc i

dt  3600+*Q
vy Vi i
av, Vi

= + —
dt R,C, ' C,

In my original approach, | didn’t include V,, as a state but | then added it and it gave me some more flexibility
with specifying the process noise covariance matrix.

3.3.11 Euler Forward Integration

We can first use Euler forward integration and obtain:

e
SOC, = SOCy_y — ——2

3600 * Q
Vl,k—l ik—l
Vl,k = Vl,k—l - WAt + C—At
1%1 1
V2,k—1 ik—l
VZ,k = VZ,k—l - R.C At + C—At
2%2 2

Vox = ik-1Ro

Using this method, we can say:

1 0
o4 _ Re 0O
Tdx At
0 0 1-— 0
0 0 RZ CZ
0 0
Using this method, we can also say for our state estimate:
" 0 At
3600
soc | At 0 0 |soc -0
0 1- 0 0 At
n| o RiCy 2% B B
v, | T At v, 1 te-1
v, 0 0 1-— v 0 v, At
k 0 0 2Lo 0 k-1 Cz
R,

3.3.1.2 Analytical Integration

We can also assume that over our time increment, the current is constant and then we have:

_ bk
S0C, = S0y = 305"

_ At _At
Vig =Vigqe RCr+ i 4R (1—e &
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__At _At
Vo = Vopo1e ReCz+ 0 4Ry | 1 —e ReC2

Vox = ix-1Ro

Using this method, we then have:

1 0
o o 00 |
_df 10 e RG 0 0
e RC2
0 0 0 0
Using this method, we can also say for our state estimate:
At
3600 * Q
soct [Y 9, 0 0 Jrsoc st
Vi _|O e RiCi 0 0 | Vi + R; (1—6 Rlcl) i
VZ 0 0 RAE‘ Vz k-1
e R2Cz _ At
Vo k 0 0 0 0 Vo k=1 R, (1_e chz)
Ro

3.3.2 Measurement Equation (Observation Matrix)
For our measurement, we have:
zx = h(x) + by (uy) + v
From our equivalent circuit model, we have:
V=Voev=Vo—-V1 =V,
V = Vo (SOC) —i* Ry —V; — V,

Ve Vi i,
at - Re g G2
V0=iRO

The observation matrix is much more straightforward compared to our state matrix, we have that our
measurement is the terminal voltage. We have:

_ dh(xk) _ dVOCV

H=—"=2=|Z29¢%

dx dsoc

This observation matrix holds for both state matrix approaches.

-1 -1 -1

3.3.3 Covariance Matrices

Here we detail how we find our covariance matrices. | assume that all error sources are independent from
each other so we end up with diagonal matrices. We take a sigma approach to finding the covariance
matrices.

3.3.31 Process, Q

The process covariance matrix is the trickiest to find. We again start with the process equations for Euler
forward integration:

e
SOC, = SOCy_y — m
Vi e e

Vie = Vigor — ﬁm + kC—llAt
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Vak-1 lg—1
. At + —At
R,C, C,

Vz,k = V2,k—1 -

Vox = tk-1Ro
And for analytical integration:

lg-1

SOCk = SOCk_l - m

__At _At
Vig =Vigqe RCr+ i 4R (1—e &

__At __At
VZ,k = Vz'k_le Ra2C2 + ik—lRZ 1 —e RzC2

Vo = ik-1Ro
In both methods, we have:
SO0C, = f50c(SOC,-1, i1, Q)
Vik = fr,(Vig-1, Ri, Ciyig—1) (i = 1,2)
Vo = fv,(Rosik-1)

To find the covariance matrices, we assume an error for all variables that the states are functions of except
for the previous states (since we assume that the error is already baked into them). We can differentiate
each state equation and obtain:

afSOC afSOC

dsoc, = '
k aik_ldl+ aQ dQ
ofy. ofy. of,
av., = Vi gi L dR. L dC.
e =y i+ g pt R+ et
ofy, afy,
AV, = 2% gi 4+ TV gp
ok =5 T g, o

Our covariance matrix is w,w! = Q.. We then want our errors squared so we have for the diagonals:

o - () + ()

k-1

e (v N (i o\ L ()
(dViz) =<aikv_1dz) + azgi dR; | + acVL- dc;

. [0 2 /a 2
(Vo) =<ﬂdi) +(a];V;’dR0>

Olg—q
We then have:
[(dSOCk)2 0 i 0 0 ]
0 (dVik) 0 0
0| 0 0 (av)” 0 |
[ 0 0 0 (dVO‘k)ZJ

In this derivation, we assumed that our error sources were independent. This is probably not totally
appropriate since we fitted our parameters together so any error in R; (i = 0,1,2) is probably related to the
other resistances and the errorin C; (i = 1,2). We could have included the time step error as well since that
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might vary a bit. Since we found our parameters for V,,, V;, and V, together, cross terms in the Q matrix could
be applicable. However, for simplicity, we assume independent error sources.

3.3.3.2 Measurement, R

Since our measurement is the terminal voltage only, our error source is just our error in voltage. So we
have:

R, = [dV?]
3.3.4 Some Closing Thoughts

One may notice in our equations for our measurement, we used i,. In practice we will only have i,_;. This
introduces some more error. We also have that V, , = i,_; R, when it actually is i;. We have to make some
adjustments to the Kalman filter to use online. We could introduce better estimate algorithms but we don't
go into this too much.

In summary, we derived the Kalman filter and applied it to the lithium ion SOC application and we note the
following:

e |n the derivation, we assume for the measurement that we have u, (i) in our case) but we actually
don’t have this. This doesn’t change the derivation too much but it does introduce some error

e For the state equations, we had to assume some method of integration. We introduce two methods
(we will use the analytical integration one). To optimize this, we could explore different time
increments but since we are relying on an external data source, we are limited here

e For the covariance matrices, we assume independence which might not be totally valid but it's
easier to implement

3.4 Results

I'll show results for two scenarios. The first is where the initial SOC is found by the initial terminal voltage
(when no current is applied). This would be an ideal situation where the initial SOC is known. The second
case is where we say that the initial SOC is 0.75 of the SOC found from the initial terminal voltage so the
initial SOC in the second scenario is 0.75 of the initial SOC used in the first scenario. This should illustrate
the benefit of the Kalman filter better.

We call the first scenario the perfect initial SOC scenario and the second the unknown initial SOC. | don’t
dive too deep into interpreting the results but wanted to show how the Kalman filter can be beneficial
compared to Coulomb counting (current integration) with not that much more complexity. | don’t show the
results when only relying on the terminal voltage and using the OCV — SOC relationship since those results
are very messy and don'’t give any practical use.

It's also possible to only update using the Kalman filter every x iterations. | played around with this a bit but
don’t show this here. This would correspond to an application where we use the model and then every
minute or at some other frequency, use a measurement to correct our calculation.

| also only look at the FUDS data. An example of the voltage, current, charge capacity, and SOC data is
shown in
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Figure 42: FUDS 0 deg. C 80 % SOC data.

The current changes fairly rapidly with voltage changes corresponding the changing current and changing
SOC. We use the discharge capacity to calculate the actual SOC data.

3.4.1 Perfect Initial SOC

The results are shown in Figure 43 through Figure 48.
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Figure 43: FUDS 0 deg. C 50 % SOC results.
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Figure 44: FUDS 0 deg. C 80 % SOC results.
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Figure 45: FUDS 25 deg. C 50 % SOC results.
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Figure 46: FUDS 25 deg. C 80 % SOC results.
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Figure 47: FUDS 45 deg. C 50 % SOC results.
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Figure 48: FUDS 45 deg. C 80 % SOC results.

Looking at these results, the Kalman filter doesn’t outperform the Coulomb counting method and often
underperforms. We see that the Kalman filter follows Coulomb counting pretty well as well suggesting that
the Kalman gain in the filter is small.

We will look into a little more detail in the FUDS 0 deg. C 80% SOC test. We show the Kalman gain in
Figure 49.
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Figure 49: FUDS 0 deg. C 80% SOC Kalman gain.

It's interesting to see how the Kalman gains quickly approach 0 (or close to it) suggesting an initial correction
but then mostly relying on the model. It's also important to note that our Kalman gain matrix is a 4x1 matrix
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for our 4 states. We see that the Kalman gain for the 4" state (V,) is actually quite large. This is not surprising
since 1, is more dependent on the current at the current state instead of the past state. This results in us a
seeing a fairly large correction for that state.

In Figure 51, we plot the Kalman gain multiplied by the measurement minus the model measurement.
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Figure 50: FUDS 0 deg. C 80% SOC Kalman gain * (measurement — model measurement).

We see that for our first state, SOC, that the correction term (K [z, — h(x{) — by, (w_1)]), is quite small
suggesting we are not correcting our SOC state much. The correction also bounces around with it's average
around 0 at the beginning of the test showing the it corrects SOC in one direction with a certain magnitude
then almost re-corrects itself in the opposite direction with the same magnitude. We see that we have small
changes for the other states as well except for the I, state which we already discussed.

We can also compare the terminal voltage (actual V) and the voltage predicted by the Kalman filter. This is
shown in Figure 51.
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Figure 51: Voltage comparison for FUDS 0 deg. C 80 % SOC.

It's hard to see since the plot is crowded but we see a fairly good match except at low OCV and SOC values
(end of test). This is expected since we saw that at low OCV, the dynamics can be significant and we ended
up choosing to use the OCV-SOC curve from the Incremental method. Potentially, the OCV-SOC
relationship from the Low Current test could provide better results. We can also look at the voltage for all
the states. This is shown in Figure 52
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Figure 52: Voltage comparison for all states for FUDS 0 deg. C 80 % SOC.

We can compare the OCV prediction to the known OCV (based on the SOC so it's not actually known but
we say it is). We see again that the OCV prediction deviates a bit at the end of the test. It's interesting to
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note that V1 and V2 are similar magnitude suggesting that the FUDS test does a good job of capturing fast
and slow dynamics.

| plot the average RMS error (average of 50% and 80% SOC) as a function of temperature in Figure 53
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Figure 53: Average RMS Error vs Temperature (Perfect Initial SOC).

Figure 53 shows that Coulomb counting outperforms the Kalman filter except at 0 deg. C. Remember, at 0
deg. C, we had the best fit for our model parameters so this isn’t too surprising. We still see that the RMS
error from the Kalman filter and Coulomb counting are comparable being the same order of magnitude.

There’s a lot more we could say but we’ll move on to the next section now.

3.4.2 Unknown Initial SOC

In this section, we compare Coulomb counting to the Kalman filter with the initial SOC off by 25%. We
already know that Coulomb counting has no way of correcting itself and we want to show the benefit of the
Kalman filter when the initial state prediction is inaccurate.

The results are shown in Figure 54 through Figure 59.
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Figure 54; FUDS 0 deg. C 50 % SOC (Initial Guess Off).
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Figure 55: FUDS 0 deg. C 80 % SOC (Initial Guess Off).
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Figure 56: FUDS 25 deg. C 50 % SOC (Initial Guess Off).
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Figure 57: FUDS 25 deg. C 80 % SOC (Initial Guess Off).
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Figure 58: FUDS 45 deg. C 50 % SOC (Initial Guess Off).
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Figure 59: FUDS 45 deg. C 80 % SOC (Initial Guess Off).

It's cool to see how the Kalman filter quickly corrects itself. It's also interesting to see how the Kalman filter
sometimes overshoots but sometimes undershoots when it corrects. We could draw a block diagram and
look at the different ways of analyzing the Kalman filter to tune it better but I'll leave that for a future idea.

We’ll look into more detail for the FUDS 0 deg. C 80 % SOC case again. We first show the Kalman gain in
Figure 60.
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Kalman Gain vs Time
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Figure 60: Kalman Gain for FUDS 0 deg. C 80 % SOC (Initial Guess Off).

A little surprisingly, we don’t see a huge different between Figure 60 and Figure 49. It's apparent that the
Kalman gain must be the reason why the Kalman filter corrects itself but perhaps since it corrects itself so
quickly, we don’t see the influence on the Kalman gain. Perhaps if we zoomed in on the x axis we would.
Overall, the Kalman gain is still very close to what it was for the Perfect Initial Guess case. Once the Kalman
filter corrects itself, it must go back to relying on the model. We show the Kalman gain multiplied by the
difference between the measurement and the model measurement in Figure 61.

zk-yk
x 051
=
0.0 1

= —— FError

L —0.5 s B v et

vy T T TV T _iI~ ¥ T T T

:-! Py

o 0014 ' —— K*error

I

M0.00 4
—_ KW & (= Lr oy LY
_gQ T T TN =t Y _ = T T
=

' 0.01 A l
JONN O R 5 PO A5V 5 SR 8 PO ) PR O
‘BI —0.01 B ! - -t r'i - L ) f— K¥error
£ ’ K3 % (o L g L)
Ml T \‘__ J'_l'\ll T T
% 0.004 =
M —— K¥error
~' —0.05
S WA o Loy o)
‘;! T T \L_l\l ‘,'_I\}I T T
0,00 1
N —— K¥error
X —0.25 . . . . —— '
2 0 2000 4000 6000 8000 10000

Time (s)

Figure 61: FUDS 0 deg. C 80% SOC Kalman gain * (measurement — model measurement) (Initial Guess Off).
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We see that for our first state, SOC, that the correction term (K, [z — h(x]) — by, (u,_1)], is still small but
that it is correcting in the positive direction compared to the result we got with the Perfect Initial Guess in
Figure 61. It's cool to see how the Kalman gain pushes the SOC up to correct itself. We biased the SOC
initial guess down so it makes sense to correct itself by pushing up. The other states must correct
themselves to give the right terminal voltage with the OCV voltage being corrected also to align with the
SOC estimate.

Figure 62 shows the terminal voltage comparison.
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Figure 62: Terminal Voltage Comparison (Initial Guess Off).

We see a good match again with some deviation around low OCV values which we saw before. We also
note that at the very beginning we see a deviation compared to the results in Figure 51. This must be the
result of our initial guess being off but then we see that it quickly corrects and we get a good match for the
rest of the test minus the end where we know we have problems.

Figure 63 shows the same for all states. We compare this to the results with the Perfect Initial Guess in
Figure 52.
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Figure 63: Voltage Comparison (Initial Guess Off).
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We see at the beginning, that the OCV model is off and how it corrects itself. Also note that V2 spikes up
initially also. This may be due to the Kalman filter trying to correct the voltage but that the time constant of
V2 is slower so takes longer to settle.

Figure 64 shows the average RMS error vs temperature for the Initial Guess Off case.
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Figure 64: Average RMS Error vs Temperature (Initial Guess Off).
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We see that the Kalman filter out performs the Coulomb counting method by an order of magnitude. We
also see that, compared to the results in Figure 53, that the RMS error with the Kalman filter is comparable
(in some cases, very similar) to the RMS error with the Perfect Initial guess. We plot the RMS error of the
Initial Guess Off vs the Perfect Initial Guess for the Kalman filter in Figure 65 and for the Coulomb counting
method in Figure 66.
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Kalman Filter RMS Comparison
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Figure 65: RMS Error (Initial Guess Off) vs RMS Error (Perfect Initial Guess) for the Kalman Filter.
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Figure 66: RMS Error (Initial Guess Off) vs RMS Error (Perfect Initial Guess) for Coulomb Counting.

Points above the y=x line correspond to the RMS error for the Initial Guess Off scenario being higher
(worse) than the Perfect Initial Guess. We see that for the Kalman filter, the RMS error is worse for the
Initial Guess Off scenario compared to the Perfect Initial Guess (except for one point which is interesting)
but not that much worse. We see for the Coulomb counting method; the RMS error is way worse (order of
magnitude higher) for the Initial Guess Off scenario compared to the Perfect Initial Guess scenario.

We showed how the Kalman filter can be applied to the lithium ion battery SOC estimation. While the
Coulomb counting provided smaller error for the Perfect Initial Guess, we showed how this method is not
robust against uncertainty in initial guesses and we can see how over time, the error may grow since any
error integrates over time while the Kalman filter provides some robustness against uncertainty.

4 Some Closing Thoughts

| was able to show how to build the Kalman filter for a SOC application for lithium ion batteries. We saw
how the filter can be derived and built and implemented while also some discussing some challenges. The
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Kalman filter has obvious benefits in robustness that don't require too much complexity. There were some
challenges that we discussed including:

e Developing an accurate model
o Especially considering degradation over time
o We also used fixed parameter values where we could potentially make them functions of
SOC (in addition to temperature)
e Building the state and measurement equations and linearizing
o We compared two methods: analytical integration and forward Euler
¢ Finding the process and noise covariance matrices
o We implemented fairly simple covariance matrices where we assumed independence
between the noise variables and constant values
e We didn’t talk much about manual tuning but from the results, we see an obvious opportunity in
how the Kalman filter can be tuned to better converge on the actual SOC
o In some cases, the Kalman filter deviates and potentially could be corrected by scaling
some variables influencing the Kalman gain
¢ |n implementing the Kalman filter, one can choose how often the filter should correct itself using
measurement data
o In our results, we assumed that the filter corrects itself every time update but this is
potentially unnecessary and potentially not beneficial
o We were constrained on our update rate but one can see how a study for determining the software
update rate for the Kalman filter could be important
e There are probably others that | am forgetting

In this project, | aimed to develop a better understanding of the Kalman filter and practice implementing it.
With respect to those goals, | would say | achieved them and also identified several other opportunities to
expand my understanding that | may take advantage of in the future.
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